L(s) = 1 | + (0.565 − 0.979i)2-s + (1.19 − 1.25i)3-s + (0.360 + 0.624i)4-s + (−1.19 − 2.06i)5-s + (−0.554 − 1.87i)6-s + (−2.04 + 3.54i)7-s + 3.07·8-s + (−0.149 − 2.99i)9-s − 2.70·10-s + (−1.92 + 3.33i)11-s + (1.21 + 0.292i)12-s + (−0.5 − 0.866i)13-s + (2.31 + 4.00i)14-s + (−4.01 − 0.970i)15-s + (1.01 − 1.76i)16-s + 2.15·17-s + ⋯ |
L(s) = 1 | + (0.399 − 0.692i)2-s + (0.689 − 0.724i)3-s + (0.180 + 0.312i)4-s + (−0.533 − 0.924i)5-s + (−0.226 − 0.767i)6-s + (−0.772 + 1.33i)7-s + 1.08·8-s + (−0.0499 − 0.998i)9-s − 0.853·10-s + (−0.581 + 1.00i)11-s + (0.350 + 0.0845i)12-s + (−0.138 − 0.240i)13-s + (0.617 + 1.07i)14-s + (−1.03 − 0.250i)15-s + (0.254 − 0.441i)16-s + 0.523·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.388 + 0.921i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.388 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.20059 - 0.796753i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.20059 - 0.796753i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.19 + 1.25i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.565 + 0.979i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (1.19 + 2.06i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (2.04 - 3.54i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.92 - 3.33i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 2.15T + 17T^{2} \) |
| 19 | \( 1 + 0.284T + 19T^{2} \) |
| 23 | \( 1 + (1.79 + 3.10i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.48 - 2.57i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.00 - 8.67i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 7.86T + 37T^{2} \) |
| 41 | \( 1 + (2.78 + 4.82i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.41 + 2.44i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.21 + 7.29i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 4.34T + 53T^{2} \) |
| 59 | \( 1 + (4.79 + 8.30i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.84 + 6.65i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.730 + 1.26i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 8.81T + 71T^{2} \) |
| 73 | \( 1 - 15.7T + 73T^{2} \) |
| 79 | \( 1 + (4.91 - 8.51i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.336 - 0.582i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 3.26T + 89T^{2} \) |
| 97 | \( 1 + (-4.43 + 7.68i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.77663521715212883287087366632, −12.40187216167828987238583658909, −12.03733289802740771003390434316, −10.20142032589294160548528309566, −8.877009343998280233403294274563, −8.078914324422530702775591120666, −6.85596191138548763001953194418, −5.04462449580866108894272511265, −3.38861773596318305848220549063, −2.16532857138919124091324421331,
3.17131766590844859478016914563, 4.27145296505379180507103362030, 5.93444429685444394633653072674, 7.21958962755411027917532750014, 7.920015170043019697824253442584, 9.771045064468843753270156652885, 10.51339781675344425995045450311, 11.25963938233948712272958441971, 13.44034850400346485926412636172, 13.82461329012809814745950757034