L(s) = 1 | + (0.786 + 1.36i)2-s + (−0.557 − 1.63i)3-s + (−0.236 + 0.409i)4-s + (0.557 − 0.966i)5-s + (1.79 − 2.04i)6-s + (1.93 + 3.35i)7-s + 2.40·8-s + (−2.37 + 1.82i)9-s + 1.75·10-s + (−2.48 − 4.31i)11-s + (0.802 + 0.159i)12-s + (−0.5 + 0.866i)13-s + (−3.04 + 5.27i)14-s + (−1.89 − 0.375i)15-s + (2.36 + 4.08i)16-s − 4.37·17-s + ⋯ |
L(s) = 1 | + (0.555 + 0.962i)2-s + (−0.322 − 0.946i)3-s + (−0.118 + 0.204i)4-s + (0.249 − 0.432i)5-s + (0.732 − 0.836i)6-s + (0.731 + 1.26i)7-s + 0.849·8-s + (−0.792 + 0.609i)9-s + 0.554·10-s + (−0.750 − 1.30i)11-s + (0.231 + 0.0459i)12-s + (−0.138 + 0.240i)13-s + (−0.813 + 1.40i)14-s + (−0.489 − 0.0969i)15-s + (0.590 + 1.02i)16-s − 1.06·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 - 0.302i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.953 - 0.302i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.33499 + 0.206483i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.33499 + 0.206483i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.557 + 1.63i)T \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-0.786 - 1.36i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.557 + 0.966i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.93 - 3.35i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.48 + 4.31i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 4.37T + 17T^{2} \) |
| 19 | \( 1 + 6.30T + 19T^{2} \) |
| 23 | \( 1 + (0.977 - 1.69i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.08 - 1.87i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.25 + 2.17i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 7.10T + 37T^{2} \) |
| 41 | \( 1 + (2.75 - 4.76i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.94 + 6.83i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.99 + 6.92i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 5.68T + 53T^{2} \) |
| 59 | \( 1 + (-2.34 + 4.06i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.06 + 1.84i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.16 - 2.02i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4.31T + 71T^{2} \) |
| 73 | \( 1 - 7.66T + 73T^{2} \) |
| 79 | \( 1 + (-1.49 - 2.59i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6.98 + 12.0i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 7.98T + 89T^{2} \) |
| 97 | \( 1 + (3.82 + 6.62i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.47302879859778999400830724769, −12.98953821513573346029314255616, −11.64182237702486273039963773216, −10.82128566945930231010788062944, −8.702811403868188080986871502063, −8.111703979143738017985702828358, −6.63051075195380412370956004726, −5.74218857039768356832713785665, −4.96553661032141410860719389960, −2.11576874260216266956143852443,
2.45091999925774582283453424496, 4.23462424113143446272374523413, 4.70785704976453190994270730966, 6.74962584606183136145544276223, 8.096785376104754985271857291184, 9.954796297873403048279484160006, 10.59566816188504968326069237097, 11.11082156932817837828174506649, 12.37977175177168980092268085252, 13.35147008760769711878013880133