Properties

Label 2-1166-53.52-c1-0-33
Degree $2$
Conductor $1166$
Sign $-0.464 + 0.885i$
Analytic cond. $9.31055$
Root an. cond. $3.05132$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 1.70i·3-s − 4-s + 1.22i·5-s − 1.70·6-s + 3.68·7-s + i·8-s + 0.0980·9-s + 1.22·10-s − 11-s + 1.70i·12-s − 6.29·13-s − 3.68i·14-s + 2.07·15-s + 16-s + 4.97·17-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.983i·3-s − 0.5·4-s + 0.545i·5-s − 0.695·6-s + 1.39·7-s + 0.353i·8-s + 0.0326·9-s + 0.386·10-s − 0.301·11-s + 0.491i·12-s − 1.74·13-s − 0.984i·14-s + 0.536·15-s + 0.250·16-s + 1.20·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1166 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.464 + 0.885i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1166 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.464 + 0.885i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1166\)    =    \(2 \cdot 11 \cdot 53\)
Sign: $-0.464 + 0.885i$
Analytic conductor: \(9.31055\)
Root analytic conductor: \(3.05132\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1166} (529, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1166,\ (\ :1/2),\ -0.464 + 0.885i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.743694606\)
\(L(\frac12)\) \(\approx\) \(1.743694606\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
11 \( 1 + T \)
53 \( 1 + (-6.44 - 3.38i)T \)
good3 \( 1 + 1.70iT - 3T^{2} \)
5 \( 1 - 1.22iT - 5T^{2} \)
7 \( 1 - 3.68T + 7T^{2} \)
13 \( 1 + 6.29T + 13T^{2} \)
17 \( 1 - 4.97T + 17T^{2} \)
19 \( 1 - 0.808iT - 19T^{2} \)
23 \( 1 + 6.17iT - 23T^{2} \)
29 \( 1 - 5.38T + 29T^{2} \)
31 \( 1 + 9.46iT - 31T^{2} \)
37 \( 1 - 9.37T + 37T^{2} \)
41 \( 1 + 4.27iT - 41T^{2} \)
43 \( 1 + 2.11T + 43T^{2} \)
47 \( 1 + 11.3T + 47T^{2} \)
59 \( 1 + 2.19T + 59T^{2} \)
61 \( 1 - 0.804iT - 61T^{2} \)
67 \( 1 - 11.4iT - 67T^{2} \)
71 \( 1 - 0.761iT - 71T^{2} \)
73 \( 1 + 9.51iT - 73T^{2} \)
79 \( 1 - 4.18iT - 79T^{2} \)
83 \( 1 + 6.93iT - 83T^{2} \)
89 \( 1 + 7.53T + 89T^{2} \)
97 \( 1 - 15.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.859225106731400896674315764669, −8.502743988313728742386666335117, −7.75202080184452147076041805140, −7.35371998988440547866884908170, −6.21166220684206299768859790578, −5.03297243942750312434478959739, −4.36998491511127851041580360427, −2.74946304388112963323966996017, −2.12231100352181614742207336112, −0.872894689796175454856685997697, 1.36882096222224009292922981248, 3.09407416997689066975088768505, 4.43581928296233182363982749638, 5.03334432831116364415441376962, 5.29260396272248130556319564274, 6.88207865530752757458748388515, 7.75224051425062238841633593234, 8.262166133220446207335052928793, 9.322657213887924139405241300359, 9.867191344317999285182046122218

Graph of the $Z$-function along the critical line