Properties

Label 12-1150e6-1.1-c3e6-0-2
Degree $12$
Conductor $2.313\times 10^{18}$
Sign $1$
Analytic cond. $9.75850\times 10^{10}$
Root an. cond. $8.23724$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $6$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·2-s − 5·3-s + 84·4-s − 60·6-s − 42·7-s + 448·8-s − 38·9-s − 49·11-s − 420·12-s − 16·13-s − 504·14-s + 2.01e3·16-s − 175·17-s − 456·18-s − 229·19-s + 210·21-s − 588·22-s − 138·23-s − 2.24e3·24-s − 192·26-s + 162·27-s − 3.52e3·28-s − 182·29-s + 114·31-s + 8.06e3·32-s + 245·33-s − 2.10e3·34-s + ⋯
L(s)  = 1  + 4.24·2-s − 0.962·3-s + 21/2·4-s − 4.08·6-s − 2.26·7-s + 19.7·8-s − 1.40·9-s − 1.34·11-s − 10.1·12-s − 0.341·13-s − 9.62·14-s + 63/2·16-s − 2.49·17-s − 5.97·18-s − 2.76·19-s + 2.18·21-s − 5.69·22-s − 1.25·23-s − 19.0·24-s − 1.44·26-s + 1.15·27-s − 23.8·28-s − 1.16·29-s + 0.660·31-s + 44.5·32-s + 1.29·33-s − 10.5·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{12} \cdot 23^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{6} \cdot 5^{12} \cdot 23^{6}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(2^{6} \cdot 5^{12} \cdot 23^{6}\)
Sign: $1$
Analytic conductor: \(9.75850\times 10^{10}\)
Root analytic conductor: \(8.23724\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(6\)
Selberg data: \((12,\ 2^{6} \cdot 5^{12} \cdot 23^{6} ,\ ( \ : [3/2]^{6} ),\ 1 )\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - p T )^{6} \)
5 \( 1 \)
23 \( ( 1 + p T )^{6} \)
good3 \( 1 + 5 T + 7 p^{2} T^{2} + 343 T^{3} + 2684 T^{4} + 1678 p^{2} T^{5} + 28516 p T^{6} + 1678 p^{5} T^{7} + 2684 p^{6} T^{8} + 343 p^{9} T^{9} + 7 p^{14} T^{10} + 5 p^{15} T^{11} + p^{18} T^{12} \)
7 \( 1 + 6 p T + 1587 T^{2} + 37802 T^{3} + 847647 T^{4} + 15031848 T^{5} + 290726906 T^{6} + 15031848 p^{3} T^{7} + 847647 p^{6} T^{8} + 37802 p^{9} T^{9} + 1587 p^{12} T^{10} + 6 p^{16} T^{11} + p^{18} T^{12} \)
11 \( 1 + 49 T + 5437 T^{2} + 255910 T^{3} + 13369547 T^{4} + 598134541 T^{5} + 21024562150 T^{6} + 598134541 p^{3} T^{7} + 13369547 p^{6} T^{8} + 255910 p^{9} T^{9} + 5437 p^{12} T^{10} + 49 p^{15} T^{11} + p^{18} T^{12} \)
13 \( 1 + 16 T + 1736 T^{2} + 16525 T^{3} - 1905808 T^{4} - 1014680 p^{2} T^{5} - 10408996660 T^{6} - 1014680 p^{5} T^{7} - 1905808 p^{6} T^{8} + 16525 p^{9} T^{9} + 1736 p^{12} T^{10} + 16 p^{15} T^{11} + p^{18} T^{12} \)
17 \( 1 + 175 T + 1570 p T^{2} + 2965479 T^{3} + 307614775 T^{4} + 25370128666 T^{5} + 1931720001964 T^{6} + 25370128666 p^{3} T^{7} + 307614775 p^{6} T^{8} + 2965479 p^{9} T^{9} + 1570 p^{13} T^{10} + 175 p^{15} T^{11} + p^{18} T^{12} \)
19 \( 1 + 229 T + 37201 T^{2} + 4698978 T^{3} + 528094007 T^{4} + 53571419393 T^{5} + 4705404038350 T^{6} + 53571419393 p^{3} T^{7} + 528094007 p^{6} T^{8} + 4698978 p^{9} T^{9} + 37201 p^{12} T^{10} + 229 p^{15} T^{11} + p^{18} T^{12} \)
29 \( 1 + 182 T + 91020 T^{2} + 14857459 T^{3} + 4189177066 T^{4} + 571257794354 T^{5} + 125266691581814 T^{6} + 571257794354 p^{3} T^{7} + 4189177066 p^{6} T^{8} + 14857459 p^{9} T^{9} + 91020 p^{12} T^{10} + 182 p^{15} T^{11} + p^{18} T^{12} \)
31 \( 1 - 114 T + 107143 T^{2} - 519135 p T^{3} + 5920766387 T^{4} - 860717466447 T^{5} + 216689737211050 T^{6} - 860717466447 p^{3} T^{7} + 5920766387 p^{6} T^{8} - 519135 p^{10} T^{9} + 107143 p^{12} T^{10} - 114 p^{15} T^{11} + p^{18} T^{12} \)
37 \( 1 + 64 T + 129110 T^{2} - 147736 T^{3} + 7390747047 T^{4} - 905353959816 T^{5} + 339617737815444 T^{6} - 905353959816 p^{3} T^{7} + 7390747047 p^{6} T^{8} - 147736 p^{9} T^{9} + 129110 p^{12} T^{10} + 64 p^{15} T^{11} + p^{18} T^{12} \)
41 \( 1 - 243 T + 217354 T^{2} - 51111450 T^{3} + 28972990659 T^{4} - 5821706605929 T^{5} + 2392660354692683 T^{6} - 5821706605929 p^{3} T^{7} + 28972990659 p^{6} T^{8} - 51111450 p^{9} T^{9} + 217354 p^{12} T^{10} - 243 p^{15} T^{11} + p^{18} T^{12} \)
43 \( 1 + 182 T + 260711 T^{2} + 78970510 T^{3} + 33096675423 T^{4} + 12627843861384 T^{5} + 2963222307919890 T^{6} + 12627843861384 p^{3} T^{7} + 33096675423 p^{6} T^{8} + 78970510 p^{9} T^{9} + 260711 p^{12} T^{10} + 182 p^{15} T^{11} + p^{18} T^{12} \)
47 \( 1 + 498 T + 509619 T^{2} + 135877151 T^{3} + 83998064637 T^{4} + 12243416324769 T^{5} + 8566851173627134 T^{6} + 12243416324769 p^{3} T^{7} + 83998064637 p^{6} T^{8} + 135877151 p^{9} T^{9} + 509619 p^{12} T^{10} + 498 p^{15} T^{11} + p^{18} T^{12} \)
53 \( 1 + 1290 T + 1240218 T^{2} + 836015682 T^{3} + 483217979607 T^{4} + 227680588290828 T^{5} + 95811508569502636 T^{6} + 227680588290828 p^{3} T^{7} + 483217979607 p^{6} T^{8} + 836015682 p^{9} T^{9} + 1240218 p^{12} T^{10} + 1290 p^{15} T^{11} + p^{18} T^{12} \)
59 \( 1 + 559 T + 505009 T^{2} + 126099326 T^{3} + 122476607499 T^{4} + 40791666593975 T^{5} + 34896017937142934 T^{6} + 40791666593975 p^{3} T^{7} + 122476607499 p^{6} T^{8} + 126099326 p^{9} T^{9} + 505009 p^{12} T^{10} + 559 p^{15} T^{11} + p^{18} T^{12} \)
61 \( 1 + 688 T + 705982 T^{2} + 453964488 T^{3} + 280924931687 T^{4} + 133731264949352 T^{5} + 77783878544342884 T^{6} + 133731264949352 p^{3} T^{7} + 280924931687 p^{6} T^{8} + 453964488 p^{9} T^{9} + 705982 p^{12} T^{10} + 688 p^{15} T^{11} + p^{18} T^{12} \)
67 \( 1 - 2069 T + 2400766 T^{2} - 1531587331 T^{3} + 478304331079 T^{4} + 123858083758798 T^{5} - 164138098237517020 T^{6} + 123858083758798 p^{3} T^{7} + 478304331079 p^{6} T^{8} - 1531587331 p^{9} T^{9} + 2400766 p^{12} T^{10} - 2069 p^{15} T^{11} + p^{18} T^{12} \)
71 \( 1 - 584 T + 1644691 T^{2} - 921288723 T^{3} + 1269926126623 T^{4} - 616747945790643 T^{5} + 578286194429532426 T^{6} - 616747945790643 p^{3} T^{7} + 1269926126623 p^{6} T^{8} - 921288723 p^{9} T^{9} + 1644691 p^{12} T^{10} - 584 p^{15} T^{11} + p^{18} T^{12} \)
73 \( 1 + 2485 T + 4574426 T^{2} + 5799531842 T^{3} + 5968575565743 T^{4} + 4910784012962487 T^{5} + 3377893957023056247 T^{6} + 4910784012962487 p^{3} T^{7} + 5968575565743 p^{6} T^{8} + 5799531842 p^{9} T^{9} + 4574426 p^{12} T^{10} + 2485 p^{15} T^{11} + p^{18} T^{12} \)
79 \( 1 + 1432 T + 2108895 T^{2} + 1489738990 T^{3} + 1128186053351 T^{4} + 448670081214670 T^{5} + 358134172709224002 T^{6} + 448670081214670 p^{3} T^{7} + 1128186053351 p^{6} T^{8} + 1489738990 p^{9} T^{9} + 2108895 p^{12} T^{10} + 1432 p^{15} T^{11} + p^{18} T^{12} \)
83 \( 1 + 2089 T + 2805961 T^{2} + 3233295446 T^{3} + 3234574571091 T^{4} + 2785691913858353 T^{5} + 2180446078776301958 T^{6} + 2785691913858353 p^{3} T^{7} + 3234574571091 p^{6} T^{8} + 3233295446 p^{9} T^{9} + 2805961 p^{12} T^{10} + 2089 p^{15} T^{11} + p^{18} T^{12} \)
89 \( 1 + 591 T + 2481630 T^{2} + 1931033355 T^{3} + 3220232489463 T^{4} + 2481025134045822 T^{5} + 2760586998440640820 T^{6} + 2481025134045822 p^{3} T^{7} + 3220232489463 p^{6} T^{8} + 1931033355 p^{9} T^{9} + 2481630 p^{12} T^{10} + 591 p^{15} T^{11} + p^{18} T^{12} \)
97 \( 1 - 968 T + 2732362 T^{2} - 3531908816 T^{3} + 4951320686511 T^{4} - 4930878757316040 T^{5} + 5965760995609978188 T^{6} - 4930878757316040 p^{3} T^{7} + 4951320686511 p^{6} T^{8} - 3531908816 p^{9} T^{9} + 2732362 p^{12} T^{10} - 968 p^{15} T^{11} + p^{18} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.33769470763380214588336165061, −4.83842700160118792592033635434, −4.82168151239079328090634807749, −4.75080140015013029778232208044, −4.74547113039295290815230604325, −4.54163034909032702287598342483, −4.36849640873240321176826439113, −3.98825732862814895833999621705, −3.98421300628271560035802110568, −3.80683310889716187576435768884, −3.76106155226962667586980804739, −3.51216909322230850278039185208, −3.49686210150676001624655340521, −2.84322554248794413995995652033, −2.82911248129271160349714659363, −2.78415746848627045879440999997, −2.77628966699808700922923028034, −2.71106723979918056733623418443, −2.50858117209452641837235030000, −1.99113014568376768835259920712, −1.97781963216675973444988455804, −1.86130286038776924798906907875, −1.48382369483790907588795413592, −1.36548270704762356577806892056, −1.08871459447249319571461712656, 0, 0, 0, 0, 0, 0, 1.08871459447249319571461712656, 1.36548270704762356577806892056, 1.48382369483790907588795413592, 1.86130286038776924798906907875, 1.97781963216675973444988455804, 1.99113014568376768835259920712, 2.50858117209452641837235030000, 2.71106723979918056733623418443, 2.77628966699808700922923028034, 2.78415746848627045879440999997, 2.82911248129271160349714659363, 2.84322554248794413995995652033, 3.49686210150676001624655340521, 3.51216909322230850278039185208, 3.76106155226962667586980804739, 3.80683310889716187576435768884, 3.98421300628271560035802110568, 3.98825732862814895833999621705, 4.36849640873240321176826439113, 4.54163034909032702287598342483, 4.74547113039295290815230604325, 4.75080140015013029778232208044, 4.82168151239079328090634807749, 4.83842700160118792592033635434, 5.33769470763380214588336165061

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.