Properties

Label 2-115-23.11-c2-0-5
Degree $2$
Conductor $115$
Sign $0.204 - 0.978i$
Analytic cond. $3.13352$
Root an. cond. $1.77017$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.235 − 0.151i)2-s + (0.0812 − 0.565i)3-s + (−1.62 + 3.56i)4-s + (0.629 + 2.14i)5-s + (−0.0664 − 0.145i)6-s + (−3.04 + 2.63i)7-s + (0.315 + 2.19i)8-s + (8.32 + 2.44i)9-s + (0.473 + 0.410i)10-s + (−9.09 + 14.1i)11-s + (1.88 + 1.21i)12-s + (−0.630 + 0.727i)13-s + (−0.318 + 1.08i)14-s + (1.26 − 0.181i)15-s + (−9.86 − 11.3i)16-s + (20.9 − 9.55i)17-s + ⋯
L(s)  = 1  + (0.117 − 0.0757i)2-s + (0.0270 − 0.188i)3-s + (−0.407 + 0.891i)4-s + (0.125 + 0.429i)5-s + (−0.0110 − 0.0242i)6-s + (−0.435 + 0.376i)7-s + (0.0394 + 0.274i)8-s + (0.924 + 0.271i)9-s + (0.0473 + 0.0410i)10-s + (−0.826 + 1.28i)11-s + (0.156 + 0.100i)12-s + (−0.0484 + 0.0559i)13-s + (−0.0227 + 0.0773i)14-s + (0.0842 − 0.0121i)15-s + (−0.616 − 0.711i)16-s + (1.23 − 0.561i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.204 - 0.978i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.204 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(115\)    =    \(5 \cdot 23\)
Sign: $0.204 - 0.978i$
Analytic conductor: \(3.13352\)
Root analytic conductor: \(1.77017\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{115} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 115,\ (\ :1),\ 0.204 - 0.978i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.985925 + 0.801297i\)
\(L(\frac12)\) \(\approx\) \(0.985925 + 0.801297i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.629 - 2.14i)T \)
23 \( 1 + (22.9 - 0.326i)T \)
good2 \( 1 + (-0.235 + 0.151i)T + (1.66 - 3.63i)T^{2} \)
3 \( 1 + (-0.0812 + 0.565i)T + (-8.63 - 2.53i)T^{2} \)
7 \( 1 + (3.04 - 2.63i)T + (6.97 - 48.5i)T^{2} \)
11 \( 1 + (9.09 - 14.1i)T + (-50.2 - 110. i)T^{2} \)
13 \( 1 + (0.630 - 0.727i)T + (-24.0 - 167. i)T^{2} \)
17 \( 1 + (-20.9 + 9.55i)T + (189. - 218. i)T^{2} \)
19 \( 1 + (-23.8 - 10.8i)T + (236. + 272. i)T^{2} \)
29 \( 1 + (14.6 + 32.0i)T + (-550. + 635. i)T^{2} \)
31 \( 1 + (-0.766 - 5.32i)T + (-922. + 270. i)T^{2} \)
37 \( 1 + (-13.4 + 45.7i)T + (-1.15e3 - 740. i)T^{2} \)
41 \( 1 + (17.5 - 5.16i)T + (1.41e3 - 908. i)T^{2} \)
43 \( 1 + (-30.5 - 4.39i)T + (1.77e3 + 520. i)T^{2} \)
47 \( 1 - 66.9T + 2.20e3T^{2} \)
53 \( 1 + (-70.0 + 60.7i)T + (399. - 2.78e3i)T^{2} \)
59 \( 1 + (-6.96 + 8.03i)T + (-495. - 3.44e3i)T^{2} \)
61 \( 1 + (77.2 - 11.1i)T + (3.57e3 - 1.04e3i)T^{2} \)
67 \( 1 + (-60.0 - 93.3i)T + (-1.86e3 + 4.08e3i)T^{2} \)
71 \( 1 + (26.9 - 17.3i)T + (2.09e3 - 4.58e3i)T^{2} \)
73 \( 1 + (34.9 - 76.6i)T + (-3.48e3 - 4.02e3i)T^{2} \)
79 \( 1 + (-49.2 - 42.7i)T + (888. + 6.17e3i)T^{2} \)
83 \( 1 + (-29.5 + 100. i)T + (-5.79e3 - 3.72e3i)T^{2} \)
89 \( 1 + (-67.0 - 9.64i)T + (7.60e3 + 2.23e3i)T^{2} \)
97 \( 1 + (-5.13 - 17.5i)T + (-7.91e3 + 5.08e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39307342243002490973968941426, −12.50130700317833067494777319162, −11.88673300791527621884076544792, −10.14679952201894666920887907730, −9.523263669532708286421705459579, −7.74759746076293230472508073041, −7.33238676841013757990763723633, −5.47365329031593242796061126224, −4.00682392726572735667950092563, −2.47529808746195764685526775600, 0.964889741924944756231520281050, 3.60274936169892771187652003973, 5.10668357435808962843057817907, 6.07007642382251584287835924151, 7.60925493948891053677435798174, 9.029612325615653457065821497459, 10.00015962876889420927576520062, 10.67431655704971593178309641232, 12.23659340539756979643199765591, 13.38508435509932326220360663382

Graph of the $Z$-function along the critical line