| L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.5 + 0.866i)5-s − 2·7-s + (−0.499 − 0.866i)9-s − 2·11-s + (0.499 + 0.866i)15-s + (−0.5 + 0.866i)17-s + (−0.5 + 4.33i)19-s + (−1 + 1.73i)21-s + (4 + 6.92i)23-s + (−0.499 − 0.866i)25-s − 0.999·27-s + (3 + 5.19i)29-s − 3·31-s + (−1 + 1.73i)33-s + ⋯ |
| L(s) = 1 | + (0.288 − 0.499i)3-s + (−0.223 + 0.387i)5-s − 0.755·7-s + (−0.166 − 0.288i)9-s − 0.603·11-s + (0.129 + 0.223i)15-s + (−0.121 + 0.210i)17-s + (−0.114 + 0.993i)19-s + (−0.218 + 0.377i)21-s + (0.834 + 1.44i)23-s + (−0.0999 − 0.173i)25-s − 0.192·27-s + (0.557 + 0.964i)29-s − 0.538·31-s + (−0.174 + 0.301i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.8997763025\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8997763025\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.5 - 4.33i)T \) |
| good | 7 | \( 1 + 2T + 7T^{2} \) |
| 11 | \( 1 + 2T + 11T^{2} \) |
| 13 | \( 1 + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-4 - 6.92i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 - 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3T + 31T^{2} \) |
| 37 | \( 1 - 4T + 37T^{2} \) |
| 41 | \( 1 + (2 - 3.46i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (6 - 10.3i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.5 + 4.33i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5 - 8.66i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (7 + 12.1i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3 - 5.19i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4 - 6.92i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-1 + 1.73i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4 + 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 11T + 83T^{2} \) |
| 89 | \( 1 + (-1 - 1.73i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.936633683336715192133654461454, −9.273543597525241943558225486854, −8.220413440744960637054566700392, −7.59494672793727622316772578214, −6.73094442762432761522906994012, −6.00564050687361173268780622435, −4.92770262612755435619333366564, −3.53830546618600769444687459202, −2.94951358973155154654716209911, −1.53749101803381352246038596213,
0.37173987528240481263761181968, 2.39866234635984487171182468256, 3.28166449189888195326264399220, 4.42771129142824449628815398124, 5.10247035472623644825125004760, 6.25729620937100098520054816486, 7.10764730579910796314033638024, 8.107650332960755336386650748805, 8.879933277381609031802718611186, 9.490569466185323981936903230696