Properties

Label 2-1140-5.4-c1-0-13
Degree $2$
Conductor $1140$
Sign $-0.139 + 0.990i$
Analytic cond. $9.10294$
Root an. cond. $3.01710$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + (2.21 + 0.311i)5-s − 2.21i·7-s − 9-s − 1.31·11-s − 0.836i·13-s + (0.311 − 2.21i)15-s − 4.90i·17-s − 19-s − 2.21·21-s − 5.33i·23-s + (4.80 + 1.37i)25-s + i·27-s − 1.31·29-s − 1.71·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + (0.990 + 0.139i)5-s − 0.836i·7-s − 0.333·9-s − 0.395·11-s − 0.232i·13-s + (0.0803 − 0.571i)15-s − 1.18i·17-s − 0.229·19-s − 0.483·21-s − 1.11i·23-s + (0.961 + 0.275i)25-s + 0.192i·27-s − 0.243·29-s − 0.308·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1140 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.139 + 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1140 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.139 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1140\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 19\)
Sign: $-0.139 + 0.990i$
Analytic conductor: \(9.10294\)
Root analytic conductor: \(3.01710\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1140} (229, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1140,\ (\ :1/2),\ -0.139 + 0.990i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.695158947\)
\(L(\frac12)\) \(\approx\) \(1.695158947\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 + (-2.21 - 0.311i)T \)
19 \( 1 + T \)
good7 \( 1 + 2.21iT - 7T^{2} \)
11 \( 1 + 1.31T + 11T^{2} \)
13 \( 1 + 0.836iT - 13T^{2} \)
17 \( 1 + 4.90iT - 17T^{2} \)
23 \( 1 + 5.33iT - 23T^{2} \)
29 \( 1 + 1.31T + 29T^{2} \)
31 \( 1 + 1.71T + 31T^{2} \)
37 \( 1 + 1.03iT - 37T^{2} \)
41 \( 1 - 5.87T + 41T^{2} \)
43 \( 1 + 0.214iT - 43T^{2} \)
47 \( 1 + 5.33iT - 47T^{2} \)
53 \( 1 - 8.70iT - 53T^{2} \)
59 \( 1 + 8.10T + 59T^{2} \)
61 \( 1 - 3.33T + 61T^{2} \)
67 \( 1 + 9.61iT - 67T^{2} \)
71 \( 1 + 7.80T + 71T^{2} \)
73 \( 1 - 0.193iT - 73T^{2} \)
79 \( 1 - 12.9T + 79T^{2} \)
83 \( 1 - 0.0459iT - 83T^{2} \)
89 \( 1 - 2.92T + 89T^{2} \)
97 \( 1 + 2.60iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.579799429429563843051956948537, −8.847846911193533643494801704851, −7.75937091747736543025049954800, −7.09558884497957093356959411633, −6.30968262397570344003299826464, −5.42226312320264516231707164490, −4.46816613434018754215829761247, −3.05497657689880742790799365731, −2.12631196295691755050445993095, −0.73489873080839421056084159338, 1.70426795010880710693524778281, 2.71355682412500713932923336799, 3.91205448948126330924139248018, 5.06841236641930070135690589532, 5.73868525732265095240782470099, 6.39489750410319123299217070072, 7.69076158395218465740855381013, 8.660271900691801114737307818520, 9.239495730012006811121550347996, 9.958172295982792188276549084025

Graph of the $Z$-function along the critical line