Properties

Label 2-114-19.17-c3-0-5
Degree $2$
Conductor $114$
Sign $0.960 + 0.277i$
Analytic cond. $6.72621$
Root an. cond. $2.59349$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.347 − 1.96i)2-s + (2.29 + 1.92i)3-s + (−3.75 − 1.36i)4-s + (7.64 − 2.78i)5-s + (4.59 − 3.85i)6-s + (15.4 + 26.8i)7-s + (−4 + 6.92i)8-s + (1.56 + 8.86i)9-s + (−2.82 − 16.0i)10-s + (9.20 − 15.9i)11-s + (−6 − 10.3i)12-s + (9.78 − 8.20i)13-s + (58.2 − 21.1i)14-s + (22.9 + 8.35i)15-s + (12.2 + 10.2i)16-s + (6.17 − 34.9i)17-s + ⋯
L(s)  = 1  + (0.122 − 0.696i)2-s + (0.442 + 0.371i)3-s + (−0.469 − 0.171i)4-s + (0.684 − 0.249i)5-s + (0.312 − 0.262i)6-s + (0.836 + 1.44i)7-s + (−0.176 + 0.306i)8-s + (0.0578 + 0.328i)9-s + (−0.0894 − 0.507i)10-s + (0.252 − 0.436i)11-s + (−0.144 − 0.249i)12-s + (0.208 − 0.175i)13-s + (1.11 − 0.404i)14-s + (0.395 + 0.143i)15-s + (0.191 + 0.160i)16-s + (0.0880 − 0.499i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.960 + 0.277i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 114 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.960 + 0.277i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(114\)    =    \(2 \cdot 3 \cdot 19\)
Sign: $0.960 + 0.277i$
Analytic conductor: \(6.72621\)
Root analytic conductor: \(2.59349\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{114} (55, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 114,\ (\ :3/2),\ 0.960 + 0.277i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.20826 - 0.312535i\)
\(L(\frac12)\) \(\approx\) \(2.20826 - 0.312535i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.347 + 1.96i)T \)
3 \( 1 + (-2.29 - 1.92i)T \)
19 \( 1 + (-82.5 + 6.92i)T \)
good5 \( 1 + (-7.64 + 2.78i)T + (95.7 - 80.3i)T^{2} \)
7 \( 1 + (-15.4 - 26.8i)T + (-171.5 + 297. i)T^{2} \)
11 \( 1 + (-9.20 + 15.9i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + (-9.78 + 8.20i)T + (381. - 2.16e3i)T^{2} \)
17 \( 1 + (-6.17 + 34.9i)T + (-4.61e3 - 1.68e3i)T^{2} \)
23 \( 1 + (-75.4 - 27.4i)T + (9.32e3 + 7.82e3i)T^{2} \)
29 \( 1 + (23.9 + 135. i)T + (-2.29e4 + 8.34e3i)T^{2} \)
31 \( 1 + (83.8 + 145. i)T + (-1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + 300.T + 5.06e4T^{2} \)
41 \( 1 + (-262. - 220. i)T + (1.19e4 + 6.78e4i)T^{2} \)
43 \( 1 + (449. - 163. i)T + (6.09e4 - 5.11e4i)T^{2} \)
47 \( 1 + (-12.6 - 71.6i)T + (-9.75e4 + 3.55e4i)T^{2} \)
53 \( 1 + (435. + 158. i)T + (1.14e5 + 9.56e4i)T^{2} \)
59 \( 1 + (56.7 - 321. i)T + (-1.92e5 - 7.02e4i)T^{2} \)
61 \( 1 + (25.7 + 9.36i)T + (1.73e5 + 1.45e5i)T^{2} \)
67 \( 1 + (154. + 876. i)T + (-2.82e5 + 1.02e5i)T^{2} \)
71 \( 1 + (-382. + 139. i)T + (2.74e5 - 2.30e5i)T^{2} \)
73 \( 1 + (-242. - 203. i)T + (6.75e4 + 3.83e5i)T^{2} \)
79 \( 1 + (-90.9 - 76.2i)T + (8.56e4 + 4.85e5i)T^{2} \)
83 \( 1 + (640. + 1.10e3i)T + (-2.85e5 + 4.95e5i)T^{2} \)
89 \( 1 + (-31.2 + 26.2i)T + (1.22e5 - 6.94e5i)T^{2} \)
97 \( 1 + (-156. + 886. i)T + (-8.57e5 - 3.12e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.11335081857841916852491245454, −11.85094449556122633417525011795, −11.17107014338256567437029042232, −9.650780334137598648466479899955, −9.086418423223030518594503544661, −7.996557910794114162936774542192, −5.80322925650657317472538274167, −4.93972683867353538984975651276, −3.10094780579570374650311705907, −1.75286864516471748463411595389, 1.46649940577381504447608441330, 3.70949586733945837821853319691, 5.14298681729477230786337418643, 6.74255494425900599341909494193, 7.44486856936964511094362196406, 8.619535355812598852094033981467, 9.896277759038028216933707846260, 10.90885170302989152701373557214, 12.41863925391147193472992991961, 13.62257992133835779901082168718

Graph of the $Z$-function along the critical line