L(s) = 1 | + (0.866 + 0.5i)2-s + (0.499 + 0.866i)4-s − 2.44·5-s + (−1.62 + 2.09i)7-s + 0.999i·8-s + (−2.12 − 1.22i)10-s − 4.24i·11-s + (−3.62 − 2.09i)13-s + (−2.44 + 0.999i)14-s + (−0.5 + 0.866i)16-s + (1.22 − 2.12i)17-s + (4.24 − 2.44i)19-s + (−1.22 − 2.12i)20-s + (2.12 − 3.67i)22-s − 6i·23-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.249 + 0.433i)4-s − 1.09·5-s + (−0.612 + 0.790i)7-s + 0.353i·8-s + (−0.670 − 0.387i)10-s − 1.27i·11-s + (−1.00 − 0.579i)13-s + (−0.654 + 0.267i)14-s + (−0.125 + 0.216i)16-s + (0.297 − 0.514i)17-s + (0.973 − 0.561i)19-s + (−0.273 − 0.474i)20-s + (0.452 − 0.783i)22-s − 1.25i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.164 + 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1134 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.164 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9535958903\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9535958903\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.62 - 2.09i)T \) |
good | 5 | \( 1 + 2.44T + 5T^{2} \) |
| 11 | \( 1 + 4.24iT - 11T^{2} \) |
| 13 | \( 1 + (3.62 + 2.09i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.22 + 2.12i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.24 + 2.44i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 6iT - 23T^{2} \) |
| 29 | \( 1 + (-8.87 + 5.12i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.86 - 2.80i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.62 - 2.80i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.22 - 2.12i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.5 + 6.06i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.97 - 6.87i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.15 + 1.24i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (1.22 + 2.12i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.621 - 0.358i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.74 - 3.01i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 12.7iT - 71T^{2} \) |
| 73 | \( 1 + (13.2 + 7.64i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.62 - 8.00i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.74 + 4.75i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (8.87 + 15.3i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5.74 - 3.31i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.550898113939878498507448569855, −8.550514502257400798142234930586, −7.987372235814744052939319788359, −7.08715753342019593403047306723, −6.22585238410655511724889225357, −5.32127534268325221281783539557, −4.50895219126279657021673636543, −3.20586065903968593582381807646, −2.83073500613375217699295336433, −0.34058452653445494379636304857,
1.52324145425655715529899315153, 3.03380757797395609866656792771, 3.91306851935200457229722900909, 4.54857889388651124801912255301, 5.56550874882377472344711684997, 7.00770309502175994788931696575, 7.20374091016987743206230135711, 8.151477797751983989570999638765, 9.661224566390216008127984738481, 9.858781415895023722257257213168