| L(s) = 1 | + 1.14·2-s − 0.356i·3-s − 0.687·4-s − 3.71·5-s − 0.408i·6-s − 3.07·8-s + 2.87·9-s − 4.25·10-s + 4.66i·11-s + 0.245i·12-s − 4.84i·13-s + 1.32i·15-s − 2.15·16-s + 4.45·17-s + 3.29·18-s + 2.44·19-s + ⋯ |
| L(s) = 1 | + 0.810·2-s − 0.205i·3-s − 0.343·4-s − 1.66·5-s − 0.166i·6-s − 1.08·8-s + 0.957·9-s − 1.34·10-s + 1.40i·11-s + 0.0707i·12-s − 1.34i·13-s + 0.342i·15-s − 0.538·16-s + 1.08·17-s + 0.775·18-s + 0.561·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0610i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 - 0.0610i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.561034238\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.561034238\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 23 | \( 1 + (-4.24 + 2.22i)T \) |
| good | 2 | \( 1 - 1.14T + 2T^{2} \) |
| 3 | \( 1 + 0.356iT - 3T^{2} \) |
| 5 | \( 1 + 3.71T + 5T^{2} \) |
| 11 | \( 1 - 4.66iT - 11T^{2} \) |
| 13 | \( 1 + 4.84iT - 13T^{2} \) |
| 17 | \( 1 - 4.45T + 17T^{2} \) |
| 19 | \( 1 - 2.44T + 19T^{2} \) |
| 29 | \( 1 - 4.72T + 29T^{2} \) |
| 31 | \( 1 - 7.38iT - 31T^{2} \) |
| 37 | \( 1 - 9.44iT - 37T^{2} \) |
| 41 | \( 1 - 1.19iT - 41T^{2} \) |
| 43 | \( 1 + 11.3iT - 43T^{2} \) |
| 47 | \( 1 - 0.582iT - 47T^{2} \) |
| 53 | \( 1 - 5.02iT - 53T^{2} \) |
| 59 | \( 1 + 3.07iT - 59T^{2} \) |
| 61 | \( 1 + 3.98T + 61T^{2} \) |
| 67 | \( 1 - 1.21iT - 67T^{2} \) |
| 71 | \( 1 - 3.80T + 71T^{2} \) |
| 73 | \( 1 + 5.46iT - 73T^{2} \) |
| 79 | \( 1 + 6.81iT - 79T^{2} \) |
| 83 | \( 1 - 4.38T + 83T^{2} \) |
| 89 | \( 1 - 16.5T + 89T^{2} \) |
| 97 | \( 1 - 10.1T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01445582335637621473304809509, −8.879079881077794633170746917719, −7.949452140349229744914640808905, −7.41873288386282680589003575993, −6.58534383665263458277705158272, −5.05366613571504617574221488281, −4.74175722871846817105613702172, −3.69048414746494935624593110354, −3.02682714622161532732621530876, −0.919076820947213606783839813922,
0.818287458822628619111552207969, 3.11276779280786072737404836683, 3.80732745085933121426551706171, 4.37199195998075767901402140935, 5.28567246401638068526307902475, 6.37482103767411646258485036747, 7.38202341330432467674394392877, 8.091618295814695094047753101073, 9.001607938001094738040625767952, 9.664534091538897121067166840031