L(s) = 1 | + 2.96·3-s + (2.18 − 0.458i)5-s − i·7-s + 5.80·9-s + 0.338i·11-s − 2.66·13-s + (6.49 − 1.36i)15-s + 3.60i·17-s − 7.58i·19-s − 2.96i·21-s + 1.51i·23-s + (4.57 − 2.00i)25-s + 8.30·27-s + 9.39i·29-s − 3.04·31-s + ⋯ |
L(s) = 1 | + 1.71·3-s + (0.978 − 0.205i)5-s − 0.377i·7-s + 1.93·9-s + 0.102i·11-s − 0.738·13-s + (1.67 − 0.351i)15-s + 0.874i·17-s − 1.74i·19-s − 0.647i·21-s + 0.316i·23-s + (0.915 − 0.401i)25-s + 1.59·27-s + 1.74i·29-s − 0.546·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 + 0.240i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 + 0.240i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.380962145\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.380962145\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2.18 + 0.458i)T \) |
| 7 | \( 1 + iT \) |
good | 3 | \( 1 - 2.96T + 3T^{2} \) |
| 11 | \( 1 - 0.338iT - 11T^{2} \) |
| 13 | \( 1 + 2.66T + 13T^{2} \) |
| 17 | \( 1 - 3.60iT - 17T^{2} \) |
| 19 | \( 1 + 7.58iT - 19T^{2} \) |
| 23 | \( 1 - 1.51iT - 23T^{2} \) |
| 29 | \( 1 - 9.39iT - 29T^{2} \) |
| 31 | \( 1 + 3.04T + 31T^{2} \) |
| 37 | \( 1 - 5.70T + 37T^{2} \) |
| 41 | \( 1 + 6.41T + 41T^{2} \) |
| 43 | \( 1 + 7.73T + 43T^{2} \) |
| 47 | \( 1 + 10.6iT - 47T^{2} \) |
| 53 | \( 1 - 2.35T + 53T^{2} \) |
| 59 | \( 1 - 8.53iT - 59T^{2} \) |
| 61 | \( 1 - 2.39iT - 61T^{2} \) |
| 67 | \( 1 - 6.93T + 67T^{2} \) |
| 71 | \( 1 + 0.174T + 71T^{2} \) |
| 73 | \( 1 - 9.77iT - 73T^{2} \) |
| 79 | \( 1 + 12.4T + 79T^{2} \) |
| 83 | \( 1 + 4.33T + 83T^{2} \) |
| 89 | \( 1 + 15.1T + 89T^{2} \) |
| 97 | \( 1 + 7.09iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.762203641069900940584589826565, −8.792444763046152821763114176937, −8.545076423071371486489975058538, −7.24423068674142405380448646343, −6.86242232525111437239153636161, −5.38148220649271975903676848111, −4.46276294713655036376292487060, −3.32774332727347983498562595254, −2.46647229582626300165406421942, −1.52619556685562821274509152971,
1.74924291798216788381907539882, 2.51691509996731509658658072013, 3.33360142824309162612550632490, 4.49688022379654089820597250833, 5.65109311236161780360484856379, 6.63018804403982889766709212014, 7.66149651511418471042124526931, 8.223555569838755478199197688923, 9.139294285530308000411206454389, 9.810970419183823899849705046839