Properties

Label 2-1120-40.29-c1-0-6
Degree $2$
Conductor $1120$
Sign $-0.722 - 0.691i$
Analytic cond. $8.94324$
Root an. cond. $2.99052$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.359·3-s + (−0.565 + 2.16i)5-s + i·7-s − 2.87·9-s − 1.56i·11-s + 6.61·13-s + (0.203 − 0.776i)15-s − 2.81i·17-s + 5.37i·19-s − 0.359i·21-s + 5.85i·23-s + (−4.35 − 2.44i)25-s + 2.10·27-s + 6.75i·29-s − 9.18·31-s + ⋯
L(s)  = 1  − 0.207·3-s + (−0.253 + 0.967i)5-s + 0.377i·7-s − 0.957·9-s − 0.472i·11-s + 1.83·13-s + (0.0524 − 0.200i)15-s − 0.683i·17-s + 1.23i·19-s − 0.0783i·21-s + 1.22i·23-s + (−0.871 − 0.489i)25-s + 0.405·27-s + 1.25i·29-s − 1.65·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.722 - 0.691i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.722 - 0.691i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1120\)    =    \(2^{5} \cdot 5 \cdot 7\)
Sign: $-0.722 - 0.691i$
Analytic conductor: \(8.94324\)
Root analytic conductor: \(2.99052\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1120} (1009, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1120,\ (\ :1/2),\ -0.722 - 0.691i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8757163430\)
\(L(\frac12)\) \(\approx\) \(0.8757163430\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (0.565 - 2.16i)T \)
7 \( 1 - iT \)
good3 \( 1 + 0.359T + 3T^{2} \)
11 \( 1 + 1.56iT - 11T^{2} \)
13 \( 1 - 6.61T + 13T^{2} \)
17 \( 1 + 2.81iT - 17T^{2} \)
19 \( 1 - 5.37iT - 19T^{2} \)
23 \( 1 - 5.85iT - 23T^{2} \)
29 \( 1 - 6.75iT - 29T^{2} \)
31 \( 1 + 9.18T + 31T^{2} \)
37 \( 1 + 2.55T + 37T^{2} \)
41 \( 1 + 7.93T + 41T^{2} \)
43 \( 1 + 7.16T + 43T^{2} \)
47 \( 1 - 5.24iT - 47T^{2} \)
53 \( 1 + 7.46T + 53T^{2} \)
59 \( 1 - 3.87iT - 59T^{2} \)
61 \( 1 + 4.69iT - 61T^{2} \)
67 \( 1 - 9.92T + 67T^{2} \)
71 \( 1 + 11.4T + 71T^{2} \)
73 \( 1 + 3.67iT - 73T^{2} \)
79 \( 1 - 8.46T + 79T^{2} \)
83 \( 1 - 1.20T + 83T^{2} \)
89 \( 1 + 4.21T + 89T^{2} \)
97 \( 1 - 5.89iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.33568191450295204002817833234, −9.212482232760196388990029832956, −8.501264070596327208933247698886, −7.72930368652780509060983215721, −6.66276823438436934257403697128, −5.93828425089134323791459602614, −5.29187968275223688737160880888, −3.48348223564950824007279438604, −3.34141159330104533734065611367, −1.67691307654704158508774697167, 0.39406293893594653597248430193, 1.80092429690896542234117160235, 3.39344116251364591655932096469, 4.28042854693856046459349418811, 5.21995049902745605439316060659, 6.08815020747453634914063811205, 6.92490631391597724147526250108, 8.244252112378320530984822639683, 8.529855097811738593294439550721, 9.348537393306875867101085591852

Graph of the $Z$-function along the critical line