L(s) = 1 | + (0.275 − 0.158i)3-s + (0.5 − 0.866i)5-s + (−2.5 − 0.866i)7-s + (−1.44 + 2.51i)9-s + (2.44 + 4.24i)11-s + 4.44·13-s − 0.317i·15-s + (−4.22 + 2.43i)17-s + (−3.67 − 2.12i)19-s + (−0.825 + 0.158i)21-s + (3.94 + 2.28i)23-s + (−0.499 − 0.866i)25-s + 1.87i·27-s + 7.24i·29-s + (−0.775 − 1.34i)31-s + ⋯ |
L(s) = 1 | + (0.158 − 0.0917i)3-s + (0.223 − 0.387i)5-s + (−0.944 − 0.327i)7-s + (−0.483 + 0.836i)9-s + (0.738 + 1.27i)11-s + 1.23·13-s − 0.0820i·15-s + (−1.02 + 0.591i)17-s + (−0.842 − 0.486i)19-s + (−0.180 + 0.0346i)21-s + (0.823 + 0.475i)23-s + (−0.0999 − 0.173i)25-s + 0.360i·27-s + 1.34i·29-s + (−0.139 − 0.241i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 - 0.895i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.444 - 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.396810067\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.396810067\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (2.5 + 0.866i)T \) |
good | 3 | \( 1 + (-0.275 + 0.158i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-2.44 - 4.24i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 4.44T + 13T^{2} \) |
| 17 | \( 1 + (4.22 - 2.43i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.67 + 2.12i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.94 - 2.28i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 7.24iT - 29T^{2} \) |
| 31 | \( 1 + (0.775 + 1.34i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3 - 1.73i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 8.02iT - 41T^{2} \) |
| 43 | \( 1 - 9.44T + 43T^{2} \) |
| 47 | \( 1 + (-3 + 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.77 + 1.02i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.12 - 1.80i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.174 - 0.301i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.17 - 10.6i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 1.41iT - 71T^{2} \) |
| 73 | \( 1 + (9.67 - 5.58i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (6.67 + 3.85i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 1.87iT - 83T^{2} \) |
| 89 | \( 1 + (-9.39 - 5.42i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 11.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.931775860118906867491253967526, −8.972785467592928948455715616398, −8.644253301749308788450762992601, −7.36323103761743557325852841216, −6.66861568558550408184956132059, −5.86291094574242785060513042654, −4.66950786921828162330013870541, −3.89865986107515988730131127957, −2.61774312295589630903114504206, −1.43758681576647154994897948180,
0.62998320127379467896886470893, 2.50439849398684380663236384634, 3.41606276787399664746869362089, 4.13482568298088106701251645968, 5.97808096796991156672489323744, 6.08559146362905356075743800825, 6.92143966469345978686218428065, 8.332352402881726558984583085463, 9.038949806092924196781922523637, 9.347287440547929679757511589642