L(s) = 1 | + (1.5 − 0.866i)3-s + (−0.5 + 0.866i)5-s + (−0.866 + 2.5i)7-s + (−0.732 − 1.26i)11-s − 4.73·13-s + 1.73i·15-s + (−1.09 + 0.633i)17-s + (7.09 + 4.09i)19-s + (0.866 + 4.5i)21-s + (5.13 + 2.96i)23-s + (−0.499 − 0.866i)25-s + 5.19i·27-s + 10.4i·29-s + (1.09 + 1.90i)31-s + (−2.19 − 1.26i)33-s + ⋯ |
L(s) = 1 | + (0.866 − 0.499i)3-s + (−0.223 + 0.387i)5-s + (−0.327 + 0.944i)7-s + (−0.220 − 0.382i)11-s − 1.31·13-s + 0.447i·15-s + (−0.266 + 0.153i)17-s + (1.62 + 0.940i)19-s + (0.188 + 0.981i)21-s + (1.07 + 0.618i)23-s + (−0.0999 − 0.173i)25-s + 0.999i·27-s + 1.94i·29-s + (0.197 + 0.341i)31-s + (−0.382 − 0.220i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.197 - 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.197 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.575818010\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.575818010\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.866 - 2.5i)T \) |
good | 3 | \( 1 + (-1.5 + 0.866i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (0.732 + 1.26i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 4.73T + 13T^{2} \) |
| 17 | \( 1 + (1.09 - 0.633i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-7.09 - 4.09i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.13 - 2.96i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 10.4iT - 29T^{2} \) |
| 31 | \( 1 + (-1.09 - 1.90i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.73 + i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 5.19iT - 41T^{2} \) |
| 43 | \( 1 + 3.92T + 43T^{2} \) |
| 47 | \( 1 + (-1.26 + 2.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.169 - 0.0980i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.09 - 2.36i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.13 - 3.69i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.69 - 9.86i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.26iT - 71T^{2} \) |
| 73 | \( 1 + (10.0 - 5.83i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4.09 + 2.36i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 14.6iT - 83T^{2} \) |
| 89 | \( 1 + (-12.6 - 7.33i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 3.46iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.853540508125586420924454464840, −9.029317544455347705653211718018, −8.445147340892532476182315106925, −7.39826588735854276839113255174, −7.08682813577040244267530944080, −5.66129915109646971856104803332, −5.04931020515767946006300833041, −3.29112845687515044881011406181, −2.91221024659776373386288303872, −1.71897630001949185639619578468,
0.60877347092285853240126160239, 2.52512946950264574630371684254, 3.32474668786633803695511252084, 4.44782387835381760201072896170, 4.96806694017683452803694574897, 6.46020817503341401799832137982, 7.40308697685434963154754645427, 7.917696383157269289882745798542, 9.041230821907177470976938020930, 9.659972148739305428261893377463