L(s) = 1 | + (−0.733 + 0.423i)3-s + (−2.17 + 0.498i)5-s + (−1.14 + 2.38i)7-s + (−1.14 + 1.97i)9-s + (−0.573 − 0.993i)11-s + 1.58i·13-s + (1.38 − 1.28i)15-s + (−3.61 + 2.08i)17-s + (3.82 − 6.62i)19-s + (−0.166 − 2.23i)21-s + (−4.27 − 2.46i)23-s + (4.50 − 2.17i)25-s − 4.47i·27-s + 5.62·29-s + (2.31 + 4.01i)31-s + ⋯ |
L(s) = 1 | + (−0.423 + 0.244i)3-s + (−0.974 + 0.222i)5-s + (−0.434 + 0.900i)7-s + (−0.380 + 0.658i)9-s + (−0.172 − 0.299i)11-s + 0.438i·13-s + (0.358 − 0.332i)15-s + (−0.876 + 0.506i)17-s + (0.876 − 1.51i)19-s + (−0.0362 − 0.487i)21-s + (−0.890 − 0.514i)23-s + (0.900 − 0.434i)25-s − 0.861i·27-s + 1.04·29-s + (0.415 + 0.720i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.160 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.160 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2213531419\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2213531419\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.17 - 0.498i)T \) |
| 7 | \( 1 + (1.14 - 2.38i)T \) |
good | 3 | \( 1 + (0.733 - 0.423i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (0.573 + 0.993i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 1.58iT - 13T^{2} \) |
| 17 | \( 1 + (3.61 - 2.08i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.82 + 6.62i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (4.27 + 2.46i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 5.62T + 29T^{2} \) |
| 31 | \( 1 + (-2.31 - 4.01i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.03 + 0.595i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 0.457T + 41T^{2} \) |
| 43 | \( 1 + 4.02iT - 43T^{2} \) |
| 47 | \( 1 + (10.2 + 5.91i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.27 + 0.738i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (7.38 + 12.7i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.66 - 9.81i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.89 + 4.55i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 7.40T + 71T^{2} \) |
| 73 | \( 1 + (2.18 - 1.26i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.29 + 5.71i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6.85iT - 83T^{2} \) |
| 89 | \( 1 + (4.88 - 8.46i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 13.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.609527574013283023039464695881, −8.590140570347360906209334305860, −8.211270110730762839013549035209, −6.95153081843797548371641660186, −6.32207648553693111911908921842, −5.17624770585157812367608973738, −4.52596332662834478667668757608, −3.26074364981523098519663991165, −2.34780726774839877063645336752, −0.11780035474349320592287301848,
1.12241250135826509574331405902, 3.06832266726286134125520867965, 3.88184830695129393185557562961, 4.79930990350410679785619805296, 5.97127344876182805520643238443, 6.73275328533349808396985872789, 7.65336592826922027070430768897, 8.149093207207890148859687284570, 9.357128449749461467320253218106, 10.04321582627908913933279549450