L(s) = 1 | + (−1.21 + 0.699i)3-s + (1.87 + 1.21i)5-s + (0.374 − 2.61i)7-s + (−0.520 + 0.900i)9-s + (−1.87 − 3.25i)11-s − 4.96i·13-s + (−3.12 − 0.159i)15-s + (−5.30 + 3.06i)17-s + (−1.28 + 2.22i)19-s + (1.37 + 3.43i)21-s + (−7.81 − 4.51i)23-s + (2.04 + 4.56i)25-s − 5.65i·27-s − 3.74·29-s + (3.33 + 5.77i)31-s + ⋯ |
L(s) = 1 | + (−0.699 + 0.404i)3-s + (0.839 + 0.543i)5-s + (0.141 − 0.989i)7-s + (−0.173 + 0.300i)9-s + (−0.565 − 0.980i)11-s − 1.37i·13-s + (−0.807 − 0.0411i)15-s + (−1.28 + 0.743i)17-s + (−0.294 + 0.509i)19-s + (0.300 + 0.750i)21-s + (−1.62 − 0.940i)23-s + (0.409 + 0.912i)25-s − 1.08i·27-s − 0.694·29-s + (0.599 + 1.03i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.607 + 0.794i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.607 + 0.794i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4628820433\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4628820433\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.87 - 1.21i)T \) |
| 7 | \( 1 + (-0.374 + 2.61i)T \) |
good | 3 | \( 1 + (1.21 - 0.699i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (1.87 + 3.25i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 4.96iT - 13T^{2} \) |
| 17 | \( 1 + (5.30 - 3.06i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.28 - 2.22i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (7.81 + 4.51i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 3.74T + 29T^{2} \) |
| 31 | \( 1 + (-3.33 - 5.77i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.798 - 0.460i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 4.36T + 41T^{2} \) |
| 43 | \( 1 + 6.42iT - 43T^{2} \) |
| 47 | \( 1 + (4.22 + 2.43i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.78 + 3.33i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.451 + 0.781i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.15 + 5.47i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (11.7 - 6.79i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 0.419T + 71T^{2} \) |
| 73 | \( 1 + (-2.32 + 1.33i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.17 - 12.4i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 11.8iT - 83T^{2} \) |
| 89 | \( 1 + (-6.05 + 10.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 7.40iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.10326981032036199545571343213, −8.531269604133532379075696619975, −8.048271467381675074254424413273, −6.82830542063876493217761805485, −6.00493802439709428036350759567, −5.44465016666056655493223021958, −4.37522925925216804474672364674, −3.26705497304111380017184620601, −2.04344617277012470499864354861, −0.20266465803912496559911245935,
1.76659969755002509390230296966, 2.43818620151463957174657894516, 4.33783958650935548737286448783, 5.07497323449809899130168253210, 6.00819890894332410756835606311, 6.51268834455510071402226437619, 7.52469003458850846004298450664, 8.720937516843610904199451822433, 9.333971089857694002500191963870, 9.862997280713557092773813384641