L(s) = 1 | + (2.73 − 1.58i)3-s + (2.12 + 0.696i)5-s + (2.30 + 1.29i)7-s + (3.49 − 6.06i)9-s + (−2.28 − 3.95i)11-s + 0.903i·13-s + (6.91 − 1.45i)15-s + (−2.49 + 1.44i)17-s + (−2.04 + 3.54i)19-s + (8.36 − 0.0836i)21-s + (−3.63 − 2.09i)23-s + (4.03 + 2.95i)25-s − 12.6i·27-s − 0.822·29-s + (−2.80 − 4.84i)31-s + ⋯ |
L(s) = 1 | + (1.58 − 0.912i)3-s + (0.950 + 0.311i)5-s + (0.870 + 0.491i)7-s + (1.16 − 2.02i)9-s + (−0.688 − 1.19i)11-s + 0.250i·13-s + (1.78 − 0.375i)15-s + (−0.605 + 0.349i)17-s + (−0.469 + 0.813i)19-s + (1.82 − 0.0182i)21-s + (−0.757 − 0.437i)23-s + (0.806 + 0.591i)25-s − 2.43i·27-s − 0.152·29-s + (−0.502 − 0.871i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.720 + 0.693i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.720 + 0.693i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.373525185\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.373525185\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2.12 - 0.696i)T \) |
| 7 | \( 1 + (-2.30 - 1.29i)T \) |
good | 3 | \( 1 + (-2.73 + 1.58i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (2.28 + 3.95i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 0.903iT - 13T^{2} \) |
| 17 | \( 1 + (2.49 - 1.44i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.04 - 3.54i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.63 + 2.09i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 0.822T + 29T^{2} \) |
| 31 | \( 1 + (2.80 + 4.84i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-8.84 - 5.10i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 9.31T + 41T^{2} \) |
| 43 | \( 1 - 3.07iT - 43T^{2} \) |
| 47 | \( 1 + (-5.21 - 3.01i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (8.24 - 4.75i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.99 - 6.91i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.84 - 8.39i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.62 + 0.936i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 8.23T + 71T^{2} \) |
| 73 | \( 1 + (4.77 - 2.75i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.36 + 5.82i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 15.1iT - 83T^{2} \) |
| 89 | \( 1 + (3.75 - 6.50i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 17.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.474641181599201736711860082941, −8.682460447158694195367685655245, −8.217131502398610098628012372753, −7.52174289675477132051510511625, −6.34891804860628505465582089996, −5.80165816922689404516448218861, −4.30361340155040060034813956283, −3.04389849245266681989606833124, −2.30238710790167825120584194447, −1.50997300337860827596958988227,
1.90087192576547467693358936649, 2.44279762643274468097774418439, 3.78885490409395236210806161438, 4.75088060149969299461069487134, 5.16100757573877053594422168565, 6.85152530085170159600619612317, 7.73404435386601055825996198080, 8.398737570962795123570807450209, 9.211468054776490399219578999777, 9.787044771306960351935382064495