L(s) = 1 | + (1.21 − 0.699i)3-s + (−1.99 − 1.01i)5-s + (−0.374 + 2.61i)7-s + (−0.520 + 0.900i)9-s + (−1.87 − 3.25i)11-s + 4.96i·13-s + (−3.12 + 0.159i)15-s + (5.30 − 3.06i)17-s + (−1.28 + 2.22i)19-s + (1.37 + 3.43i)21-s + (7.81 + 4.51i)23-s + (2.92 + 4.05i)25-s + 5.65i·27-s − 3.74·29-s + (3.33 + 5.77i)31-s + ⋯ |
L(s) = 1 | + (0.699 − 0.404i)3-s + (−0.890 − 0.455i)5-s + (−0.141 + 0.989i)7-s + (−0.173 + 0.300i)9-s + (−0.565 − 0.980i)11-s + 1.37i·13-s + (−0.807 + 0.0411i)15-s + (1.28 − 0.743i)17-s + (−0.294 + 0.509i)19-s + (0.300 + 0.750i)21-s + (1.62 + 0.940i)23-s + (0.585 + 0.810i)25-s + 1.08i·27-s − 0.694·29-s + (0.599 + 1.03i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.523 - 0.851i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.523 - 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.413955041\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.413955041\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1.99 + 1.01i)T \) |
| 7 | \( 1 + (0.374 - 2.61i)T \) |
good | 3 | \( 1 + (-1.21 + 0.699i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (1.87 + 3.25i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 4.96iT - 13T^{2} \) |
| 17 | \( 1 + (-5.30 + 3.06i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.28 - 2.22i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-7.81 - 4.51i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 3.74T + 29T^{2} \) |
| 31 | \( 1 + (-3.33 - 5.77i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.798 + 0.460i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 4.36T + 41T^{2} \) |
| 43 | \( 1 - 6.42iT - 43T^{2} \) |
| 47 | \( 1 + (-4.22 - 2.43i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5.78 - 3.33i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.451 + 0.781i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.15 + 5.47i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-11.7 + 6.79i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 0.419T + 71T^{2} \) |
| 73 | \( 1 + (2.32 - 1.33i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.17 - 12.4i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 11.8iT - 83T^{2} \) |
| 89 | \( 1 + (-6.05 + 10.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 7.40iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.629184080292245656844061511648, −8.947577619442431280382829891308, −8.354009633584104308826642527371, −7.69336330741366228493803900953, −6.83703060441394578074035785996, −5.54594031815390964057187237748, −4.92843420397307429284143788266, −3.46427979336385009418427149685, −2.83951593601629588468758247101, −1.43122585777640009467643949920,
0.60581326743891197573570401551, 2.69180407504795904808558305631, 3.44041762761680802171571898584, 4.19862255461360807939440240175, 5.24034468794174049605610138465, 6.56549106448972924176662454164, 7.43520493753617228751645319832, 7.966625656926043719429048558098, 8.757794678254047540728854395656, 9.943785623546824003069762309668