Properties

Label 2-112-1.1-c7-0-16
Degree $2$
Conductor $112$
Sign $-1$
Analytic cond. $34.9871$
Root an. cond. $5.91499$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 18·3-s + 160·5-s + 343·7-s − 1.86e3·9-s − 5.70e3·11-s + 1.38e3·13-s + 2.88e3·15-s − 3.14e4·17-s + 1.99e4·19-s + 6.17e3·21-s + 7.71e4·23-s − 5.25e4·25-s − 7.29e4·27-s − 1.93e5·29-s + 2.63e4·31-s − 1.02e5·33-s + 5.48e4·35-s + 2.04e5·37-s + 2.49e4·39-s − 6.63e5·41-s + 3.35e5·43-s − 2.98e5·45-s − 1.11e6·47-s + 1.17e5·49-s − 5.65e5·51-s + 1.12e5·53-s − 9.12e5·55-s + ⋯
L(s)  = 1  + 0.384·3-s + 0.572·5-s + 0.377·7-s − 0.851·9-s − 1.29·11-s + 0.175·13-s + 0.220·15-s − 1.55·17-s + 0.667·19-s + 0.145·21-s + 1.32·23-s − 0.672·25-s − 0.712·27-s − 1.47·29-s + 0.158·31-s − 0.497·33-s + 0.216·35-s + 0.663·37-s + 0.0674·39-s − 1.50·41-s + 0.644·43-s − 0.487·45-s − 1.57·47-s + 1/7·49-s − 0.597·51-s + 0.104·53-s − 0.739·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $-1$
Analytic conductor: \(34.9871\)
Root analytic conductor: \(5.91499\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 112,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - p^{3} T \)
good3 \( 1 - 2 p^{2} T + p^{7} T^{2} \)
5 \( 1 - 32 p T + p^{7} T^{2} \)
11 \( 1 + 5704 T + p^{7} T^{2} \)
13 \( 1 - 1388 T + p^{7} T^{2} \)
17 \( 1 + 31434 T + p^{7} T^{2} \)
19 \( 1 - 19966 T + p^{7} T^{2} \)
23 \( 1 - 77136 T + p^{7} T^{2} \)
29 \( 1 + 193374 T + p^{7} T^{2} \)
31 \( 1 - 26356 T + p^{7} T^{2} \)
37 \( 1 - 204346 T + p^{7} T^{2} \)
41 \( 1 + 663050 T + p^{7} T^{2} \)
43 \( 1 - 335920 T + p^{7} T^{2} \)
47 \( 1 + 1119812 T + p^{7} T^{2} \)
53 \( 1 - 112782 T + p^{7} T^{2} \)
59 \( 1 + 536154 T + p^{7} T^{2} \)
61 \( 1 + 1170264 T + p^{7} T^{2} \)
67 \( 1 + 3890660 T + p^{7} T^{2} \)
71 \( 1 + 2505344 T + p^{7} T^{2} \)
73 \( 1 + 1435070 T + p^{7} T^{2} \)
79 \( 1 + 176536 T + p^{7} T^{2} \)
83 \( 1 - 6211622 T + p^{7} T^{2} \)
89 \( 1 + 4729062 T + p^{7} T^{2} \)
97 \( 1 + 2129562 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.53371819450485578904168707737, −10.76381923794521689396849579527, −9.453415827882679999475134433158, −8.529686728051361656468173591978, −7.42872163831214295384204678376, −5.92401211239699199959893078217, −4.87863407365946872947735746375, −3.07101825806184486729329248956, −1.95178367957386716520545544178, 0, 1.95178367957386716520545544178, 3.07101825806184486729329248956, 4.87863407365946872947735746375, 5.92401211239699199959893078217, 7.42872163831214295384204678376, 8.529686728051361656468173591978, 9.453415827882679999475134433158, 10.76381923794521689396849579527, 11.53371819450485578904168707737

Graph of the $Z$-function along the critical line