Properties

Label 2-112-112.27-c3-0-19
Degree $2$
Conductor $112$
Sign $0.412 - 0.910i$
Analytic cond. $6.60821$
Root an. cond. $2.57064$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.35 + 1.56i)2-s + (−4.79 + 4.79i)3-s + (3.10 − 7.37i)4-s + (2.04 − 2.04i)5-s + (3.79 − 18.8i)6-s + (13.3 − 12.8i)7-s + (4.23 + 22.2i)8-s − 19.0i·9-s + (−1.61 + 8.02i)10-s + (34.5 − 34.5i)11-s + (20.4 + 50.2i)12-s + (−7.32 − 7.32i)13-s + (−11.4 + 51.1i)14-s + 19.6i·15-s + (−44.7 − 45.7i)16-s + 133. i·17-s + ⋯
L(s)  = 1  + (−0.832 + 0.553i)2-s + (−0.923 + 0.923i)3-s + (0.387 − 0.921i)4-s + (0.183 − 0.183i)5-s + (0.258 − 1.27i)6-s + (0.722 − 0.691i)7-s + (0.187 + 0.982i)8-s − 0.704i·9-s + (−0.0511 + 0.253i)10-s + (0.947 − 0.947i)11-s + (0.493 + 1.20i)12-s + (−0.156 − 0.156i)13-s + (−0.218 + 0.975i)14-s + 0.337i·15-s + (−0.699 − 0.714i)16-s + 1.90i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.412 - 0.910i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.412 - 0.910i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $0.412 - 0.910i$
Analytic conductor: \(6.60821\)
Root analytic conductor: \(2.57064\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{112} (27, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :3/2),\ 0.412 - 0.910i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.752598 + 0.485402i\)
\(L(\frac12)\) \(\approx\) \(0.752598 + 0.485402i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (2.35 - 1.56i)T \)
7 \( 1 + (-13.3 + 12.8i)T \)
good3 \( 1 + (4.79 - 4.79i)T - 27iT^{2} \)
5 \( 1 + (-2.04 + 2.04i)T - 125iT^{2} \)
11 \( 1 + (-34.5 + 34.5i)T - 1.33e3iT^{2} \)
13 \( 1 + (7.32 + 7.32i)T + 2.19e3iT^{2} \)
17 \( 1 - 133. iT - 4.91e3T^{2} \)
19 \( 1 + (13.6 - 13.6i)T - 6.85e3iT^{2} \)
23 \( 1 - 129.T + 1.21e4T^{2} \)
29 \( 1 + (-85.7 + 85.7i)T - 2.43e4iT^{2} \)
31 \( 1 - 239.T + 2.97e4T^{2} \)
37 \( 1 + (50.7 + 50.7i)T + 5.06e4iT^{2} \)
41 \( 1 - 118.T + 6.89e4T^{2} \)
43 \( 1 + (75.4 - 75.4i)T - 7.95e4iT^{2} \)
47 \( 1 - 169.T + 1.03e5T^{2} \)
53 \( 1 + (-482. - 482. i)T + 1.48e5iT^{2} \)
59 \( 1 + (-285. - 285. i)T + 2.05e5iT^{2} \)
61 \( 1 + (313. + 313. i)T + 2.26e5iT^{2} \)
67 \( 1 + (58.2 + 58.2i)T + 3.00e5iT^{2} \)
71 \( 1 + 374.T + 3.57e5T^{2} \)
73 \( 1 - 610.T + 3.89e5T^{2} \)
79 \( 1 - 460. iT - 4.93e5T^{2} \)
83 \( 1 + (-875. + 875. i)T - 5.71e5iT^{2} \)
89 \( 1 + 633.T + 7.04e5T^{2} \)
97 \( 1 - 946. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.57810483438180468112345178564, −11.77229177825196672744330177149, −10.84585957870279783907260423054, −10.35938920955944093447983473885, −9.066110253788797635632434593392, −8.024308951044257119242855838403, −6.47055438184883275499428446921, −5.49368585905420784609272763100, −4.21723461612511183117904710577, −1.10858827692468214257784753993, 0.982437627836179689392131080709, 2.42954701060693900483934865946, 4.85403097481637127579935346160, 6.60386547250303148389901723102, 7.27217837108637663747067252038, 8.732411203613943556011194555473, 9.769732229258155054264824916691, 11.15998432454646436288021611110, 11.92606012499715214388554452503, 12.32026968814063619339203227754

Graph of the $Z$-function along the critical line