L(s) = 1 | + (−2.35 + 1.56i)2-s + (−4.79 + 4.79i)3-s + (3.10 − 7.37i)4-s + (2.04 − 2.04i)5-s + (3.79 − 18.8i)6-s + (13.3 − 12.8i)7-s + (4.23 + 22.2i)8-s − 19.0i·9-s + (−1.61 + 8.02i)10-s + (34.5 − 34.5i)11-s + (20.4 + 50.2i)12-s + (−7.32 − 7.32i)13-s + (−11.4 + 51.1i)14-s + 19.6i·15-s + (−44.7 − 45.7i)16-s + 133. i·17-s + ⋯ |
L(s) = 1 | + (−0.832 + 0.553i)2-s + (−0.923 + 0.923i)3-s + (0.387 − 0.921i)4-s + (0.183 − 0.183i)5-s + (0.258 − 1.27i)6-s + (0.722 − 0.691i)7-s + (0.187 + 0.982i)8-s − 0.704i·9-s + (−0.0511 + 0.253i)10-s + (0.947 − 0.947i)11-s + (0.493 + 1.20i)12-s + (−0.156 − 0.156i)13-s + (−0.218 + 0.975i)14-s + 0.337i·15-s + (−0.699 − 0.714i)16-s + 1.90i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.412 - 0.910i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.412 - 0.910i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.752598 + 0.485402i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.752598 + 0.485402i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2.35 - 1.56i)T \) |
| 7 | \( 1 + (-13.3 + 12.8i)T \) |
good | 3 | \( 1 + (4.79 - 4.79i)T - 27iT^{2} \) |
| 5 | \( 1 + (-2.04 + 2.04i)T - 125iT^{2} \) |
| 11 | \( 1 + (-34.5 + 34.5i)T - 1.33e3iT^{2} \) |
| 13 | \( 1 + (7.32 + 7.32i)T + 2.19e3iT^{2} \) |
| 17 | \( 1 - 133. iT - 4.91e3T^{2} \) |
| 19 | \( 1 + (13.6 - 13.6i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 - 129.T + 1.21e4T^{2} \) |
| 29 | \( 1 + (-85.7 + 85.7i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 - 239.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (50.7 + 50.7i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 118.T + 6.89e4T^{2} \) |
| 43 | \( 1 + (75.4 - 75.4i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 - 169.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-482. - 482. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (-285. - 285. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (313. + 313. i)T + 2.26e5iT^{2} \) |
| 67 | \( 1 + (58.2 + 58.2i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 + 374.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 610.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 460. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-875. + 875. i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 + 633.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 946. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.57810483438180468112345178564, −11.77229177825196672744330177149, −10.84585957870279783907260423054, −10.35938920955944093447983473885, −9.066110253788797635632434593392, −8.024308951044257119242855838403, −6.47055438184883275499428446921, −5.49368585905420784609272763100, −4.21723461612511183117904710577, −1.10858827692468214257784753993,
0.982437627836179689392131080709, 2.42954701060693900483934865946, 4.85403097481637127579935346160, 6.60386547250303148389901723102, 7.27217837108637663747067252038, 8.732411203613943556011194555473, 9.769732229258155054264824916691, 11.15998432454646436288021611110, 11.92606012499715214388554452503, 12.32026968814063619339203227754