L(s) = 1 | + (−2.5 + 4.33i)3-s + (4.5 + 7.79i)5-s + (14 − 12.1i)7-s + (0.999 + 1.73i)9-s + (−28.5 + 49.3i)11-s − 70·13-s − 45.0·15-s + (−25.5 + 44.1i)17-s + (2.5 + 4.33i)19-s + (17.5 + 90.9i)21-s + (34.5 + 59.7i)23-s + (22 − 38.1i)25-s − 144.·27-s + 114·29-s + (11.5 − 19.9i)31-s + ⋯ |
L(s) = 1 | + (−0.481 + 0.833i)3-s + (0.402 + 0.697i)5-s + (0.755 − 0.654i)7-s + (0.0370 + 0.0641i)9-s + (−0.781 + 1.35i)11-s − 1.49·13-s − 0.774·15-s + (−0.363 + 0.630i)17-s + (0.0301 + 0.0522i)19-s + (0.181 + 0.944i)21-s + (0.312 + 0.541i)23-s + (0.175 − 0.304i)25-s − 1.03·27-s + 0.729·29-s + (0.0666 − 0.115i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.536093 + 1.08142i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.536093 + 1.08142i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-14 + 12.1i)T \) |
good | 3 | \( 1 + (2.5 - 4.33i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + (-4.5 - 7.79i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (28.5 - 49.3i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 70T + 2.19e3T^{2} \) |
| 17 | \( 1 + (25.5 - 44.1i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-2.5 - 4.33i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-34.5 - 59.7i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 114T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-11.5 + 19.9i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-126.5 - 219. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 42T + 6.89e4T^{2} \) |
| 43 | \( 1 - 124T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-100.5 - 174. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-196.5 + 340. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-109.5 + 189. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-354.5 - 614. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-209.5 + 362. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 96T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-156.5 + 271. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-230.5 - 399. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 588T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-508.5 - 880. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.83e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.60782332685305149632238179424, −12.38589878609169320169845936982, −11.12617753905737023704994500914, −10.24787097418557539767231598488, −9.822062218638266939600391947917, −7.86698863812020588520640571484, −6.92071386332276326703817062407, −5.16332039021654588844110979129, −4.40566887810134080486787917437, −2.27991706446225172238720019559,
0.68833255702630976640643116535, 2.43984266907745830284815425869, 4.93853429110145066101634325214, 5.78360694535227747061701620313, 7.20352261558888564560603235313, 8.371835607442038289036460901721, 9.408072128830228046476294858753, 10.92312515150809899999584688326, 11.94157378300821387265262199356, 12.66837681099206710461923172594