Properties

Label 2-112-7.3-c2-0-5
Degree $2$
Conductor $112$
Sign $0.947 - 0.318i$
Analytic cond. $3.05177$
Root an. cond. $1.74693$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.62 + 2.09i)3-s + (2.74 − 1.58i)5-s + (2.24 − 6.63i)7-s + (4.24 + 7.34i)9-s + (−6.62 + 11.4i)11-s + 5.49i·13-s + 13.2·15-s + (−11.7 − 6.77i)17-s + (0.621 − 0.358i)19-s + (21.9 − 19.3i)21-s + (−1.13 − 1.96i)23-s + (−7.48 + 12.9i)25-s − 2.15i·27-s + 20.4·29-s + (−21.3 − 12.3i)31-s + ⋯
L(s)  = 1  + (1.20 + 0.696i)3-s + (0.548 − 0.316i)5-s + (0.320 − 0.947i)7-s + (0.471 + 0.816i)9-s + (−0.601 + 1.04i)11-s + 0.422i·13-s + 0.882·15-s + (−0.690 − 0.398i)17-s + (0.0327 − 0.0188i)19-s + (1.04 − 0.920i)21-s + (−0.0493 − 0.0855i)23-s + (−0.299 + 0.518i)25-s − 0.0797i·27-s + 0.706·29-s + (−0.687 − 0.397i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 - 0.318i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.947 - 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $0.947 - 0.318i$
Analytic conductor: \(3.05177\)
Root analytic conductor: \(1.74693\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{112} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :1),\ 0.947 - 0.318i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.99627 + 0.326482i\)
\(L(\frac12)\) \(\approx\) \(1.99627 + 0.326482i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (-2.24 + 6.63i)T \)
good3 \( 1 + (-3.62 - 2.09i)T + (4.5 + 7.79i)T^{2} \)
5 \( 1 + (-2.74 + 1.58i)T + (12.5 - 21.6i)T^{2} \)
11 \( 1 + (6.62 - 11.4i)T + (-60.5 - 104. i)T^{2} \)
13 \( 1 - 5.49iT - 169T^{2} \)
17 \( 1 + (11.7 + 6.77i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (-0.621 + 0.358i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (1.13 + 1.96i)T + (-264.5 + 458. i)T^{2} \)
29 \( 1 - 20.4T + 841T^{2} \)
31 \( 1 + (21.3 + 12.3i)T + (480.5 + 832. i)T^{2} \)
37 \( 1 + (32.4 + 56.2i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 - 21.0iT - 1.68e3T^{2} \)
43 \( 1 + 6.48T + 1.84e3T^{2} \)
47 \( 1 + (41.3 - 23.8i)T + (1.10e3 - 1.91e3i)T^{2} \)
53 \( 1 + (11.0 - 19.0i)T + (-1.40e3 - 2.43e3i)T^{2} \)
59 \( 1 + (-72.5 - 41.8i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (-57.3 + 33.1i)T + (1.86e3 - 3.22e3i)T^{2} \)
67 \( 1 + (-46.3 + 80.2i)T + (-2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 - 48.4T + 5.04e3T^{2} \)
73 \( 1 + (-113. - 65.4i)T + (2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (38.1 + 66.0i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 - 107. iT - 6.88e3T^{2} \)
89 \( 1 + (145. - 83.9i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + 25.5iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67983855580377759016897908037, −12.73256641804543529555260256734, −11.08446655194017201192283755956, −9.952824530561188936264656621776, −9.321854854880656996928390809260, −8.135645518052941304257035704250, −7.01483914921713818395262592519, −4.98651900831323812093226530624, −3.90016960281137215498826958106, −2.16854593935871317076830429095, 2.07087551694015619277399623509, 3.14778055764061173912277921114, 5.42792241743296705012890498483, 6.70619055757387246125579062869, 8.257914031204176219385176041721, 8.589768597265351541469118858960, 10.00823174394354432251769209877, 11.28424126966436803063591447317, 12.61236226614385137659777050395, 13.47819392924919562230143540458

Graph of the $Z$-function along the critical line