L(s) = 1 | + (1 − i)2-s + (0.5 − 1.86i)3-s − 2i·4-s + (0.866 + 3.23i)5-s + (−1.36 − 2.36i)6-s + (−1.73 + 2i)7-s + (−2 − 2i)8-s + (−0.633 − 0.366i)9-s + (4.09 + 2.36i)10-s + (−4.23 − 1.13i)11-s + (−3.73 − i)12-s + (0.267 + 0.267i)13-s + (0.267 + 3.73i)14-s + 6.46·15-s − 4·16-s + (0.232 + 0.401i)17-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s + (0.288 − 1.07i)3-s − i·4-s + (0.387 + 1.44i)5-s + (−0.557 − 0.965i)6-s + (−0.654 + 0.755i)7-s + (−0.707 − 0.707i)8-s + (−0.211 − 0.122i)9-s + (1.29 + 0.748i)10-s + (−1.27 − 0.341i)11-s + (−1.07 − 0.288i)12-s + (0.0743 + 0.0743i)13-s + (0.0716 + 0.997i)14-s + 1.66·15-s − 16-s + (0.0562 + 0.0974i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.262 + 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.262 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.19026 - 0.909408i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19026 - 0.909408i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 + i)T \) |
| 7 | \( 1 + (1.73 - 2i)T \) |
good | 3 | \( 1 + (-0.5 + 1.86i)T + (-2.59 - 1.5i)T^{2} \) |
| 5 | \( 1 + (-0.866 - 3.23i)T + (-4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (4.23 + 1.13i)T + (9.52 + 5.5i)T^{2} \) |
| 13 | \( 1 + (-0.267 - 0.267i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.232 - 0.401i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.23 + 1.13i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-2.13 - 1.23i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.73 + 3.73i)T + 29iT^{2} \) |
| 31 | \( 1 + (0.133 + 0.232i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.86 + 10.6i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 8.92iT - 41T^{2} \) |
| 43 | \( 1 + (0.464 - 0.464i)T - 43iT^{2} \) |
| 47 | \( 1 + (3.86 - 6.69i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-11.0 - 2.96i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (9.96 + 2.66i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-0.133 + 0.0358i)T + (52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (-1.96 + 7.33i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 7.46iT - 71T^{2} \) |
| 73 | \( 1 + (-2.76 + 1.59i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.330 - 0.571i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-8.46 - 8.46i)T + 83iT^{2} \) |
| 89 | \( 1 + (4.5 + 2.59i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 10.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.34533097650639679021201982507, −12.63915562174964162475426508051, −11.43792132306193209555213176695, −10.49779333312649755707594395470, −9.443874778242363644810683293079, −7.61626870263990658289046432823, −6.53939928113158581734795868057, −5.56632499461731680468894996119, −3.12933252734082075382580597383, −2.32140870906120728004430199755,
3.42177136837605976762229564734, 4.70514491732352094662851900158, 5.41386314944077732733944861136, 7.19444575880655847641669455476, 8.497196582956406258542520261480, 9.481796011209870622456345320148, 10.43898169690887556508257203536, 12.21312145236334582773812244187, 13.10818854777947759283931862692, 13.68886459055929666880713272744