Properties

Label 2-112-28.3-c9-0-23
Degree $2$
Conductor $112$
Sign $0.837 + 0.545i$
Analytic cond. $57.6840$
Root an. cond. $7.59499$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (54.9 − 95.2i)3-s + (1.11e3 − 643. i)5-s + (−1.14e3 + 6.24e3i)7-s + (3.79e3 + 6.57e3i)9-s + (−2.05e4 − 1.18e4i)11-s − 1.81e5i·13-s − 1.41e5i·15-s + (3.06e5 + 1.77e5i)17-s + (4.86e5 + 8.41e5i)19-s + (5.32e5 + 4.52e5i)21-s + (5.19e5 − 2.99e5i)23-s + (−1.47e5 + 2.55e5i)25-s + 2.99e6·27-s − 3.25e6·29-s + (2.62e6 − 4.54e6i)31-s + ⋯
L(s)  = 1  + (0.391 − 0.678i)3-s + (0.797 − 0.460i)5-s + (−0.179 + 0.983i)7-s + (0.192 + 0.334i)9-s + (−0.422 − 0.244i)11-s − 1.76i·13-s − 0.722i·15-s + (0.891 + 0.514i)17-s + (0.855 + 1.48i)19-s + (0.597 + 0.507i)21-s + (0.386 − 0.223i)23-s + (−0.0754 + 0.130i)25-s + 1.08·27-s − 0.854·29-s + (0.510 − 0.884i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.837 + 0.545i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.837 + 0.545i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $0.837 + 0.545i$
Analytic conductor: \(57.6840\)
Root analytic conductor: \(7.59499\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{112} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :9/2),\ 0.837 + 0.545i)\)

Particular Values

\(L(5)\) \(\approx\) \(3.033721707\)
\(L(\frac12)\) \(\approx\) \(3.033721707\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (1.14e3 - 6.24e3i)T \)
good3 \( 1 + (-54.9 + 95.2i)T + (-9.84e3 - 1.70e4i)T^{2} \)
5 \( 1 + (-1.11e3 + 643. i)T + (9.76e5 - 1.69e6i)T^{2} \)
11 \( 1 + (2.05e4 + 1.18e4i)T + (1.17e9 + 2.04e9i)T^{2} \)
13 \( 1 + 1.81e5iT - 1.06e10T^{2} \)
17 \( 1 + (-3.06e5 - 1.77e5i)T + (5.92e10 + 1.02e11i)T^{2} \)
19 \( 1 + (-4.86e5 - 8.41e5i)T + (-1.61e11 + 2.79e11i)T^{2} \)
23 \( 1 + (-5.19e5 + 2.99e5i)T + (9.00e11 - 1.55e12i)T^{2} \)
29 \( 1 + 3.25e6T + 1.45e13T^{2} \)
31 \( 1 + (-2.62e6 + 4.54e6i)T + (-1.32e13 - 2.28e13i)T^{2} \)
37 \( 1 + (-8.70e6 - 1.50e7i)T + (-6.49e13 + 1.12e14i)T^{2} \)
41 \( 1 + 2.87e7iT - 3.27e14T^{2} \)
43 \( 1 + 1.33e7iT - 5.02e14T^{2} \)
47 \( 1 + (-3.28e7 - 5.68e7i)T + (-5.59e14 + 9.69e14i)T^{2} \)
53 \( 1 + (-4.01e7 + 6.95e7i)T + (-1.64e15 - 2.85e15i)T^{2} \)
59 \( 1 + (2.49e7 - 4.32e7i)T + (-4.33e15 - 7.50e15i)T^{2} \)
61 \( 1 + (-7.48e7 + 4.31e7i)T + (5.84e15 - 1.01e16i)T^{2} \)
67 \( 1 + (-8.35e7 - 4.82e7i)T + (1.36e16 + 2.35e16i)T^{2} \)
71 \( 1 + 9.10e7iT - 4.58e16T^{2} \)
73 \( 1 + (6.36e7 + 3.67e7i)T + (2.94e16 + 5.09e16i)T^{2} \)
79 \( 1 + (-3.83e7 + 2.21e7i)T + (5.99e16 - 1.03e17i)T^{2} \)
83 \( 1 - 7.60e8T + 1.86e17T^{2} \)
89 \( 1 + (-4.91e8 + 2.83e8i)T + (1.75e17 - 3.03e17i)T^{2} \)
97 \( 1 + 9.77e8iT - 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.14204254253059944785764722575, −10.48856800980124734807282041934, −9.629208014525075685061061858066, −8.295303330142043577198094040972, −7.68668980896054414610866652891, −5.84960663338882163894666825607, −5.39287206204467895378161091552, −3.21109223722569022287366772703, −2.09184310275366406453467261249, −0.955413827741485530136873373013, 0.997314427111634526906633149130, 2.57668696367926536533717375509, 3.82121204316785945969242101138, 4.93516515863722015496237361116, 6.57970482883989008382085687082, 7.36740255880001771910195125688, 9.226009968487379341444315975015, 9.666713496957112568383283065459, 10.66173031856571931428344778251, 11.78387986275935782377499549819

Graph of the $Z$-function along the critical line