Properties

Label 2-112-28.3-c9-0-34
Degree $2$
Conductor $112$
Sign $-0.545 - 0.838i$
Analytic cond. $57.6840$
Root an. cond. $7.59499$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (122. − 212. i)3-s + (−1.69e3 + 977. i)5-s + (3.57e3 − 5.25e3i)7-s + (−2.03e4 − 3.52e4i)9-s + (−4.58e4 − 2.64e4i)11-s − 1.92e5i·13-s + 4.80e5i·15-s + (5.05e5 + 2.91e5i)17-s + (−4.29e4 − 7.43e4i)19-s + (−6.78e5 − 1.40e6i)21-s + (−7.78e5 + 4.49e5i)23-s + (9.33e5 − 1.61e6i)25-s − 5.17e6·27-s − 1.30e6·29-s + (−8.22e5 + 1.42e6i)31-s + ⋯
L(s)  = 1  + (0.876 − 1.51i)3-s + (−1.21 + 0.699i)5-s + (0.562 − 0.826i)7-s + (−1.03 − 1.79i)9-s + (−0.943 − 0.544i)11-s − 1.87i·13-s + 2.45i·15-s + (1.46 + 0.847i)17-s + (−0.0756 − 0.130i)19-s + (−0.761 − 1.57i)21-s + (−0.579 + 0.334i)23-s + (0.478 − 0.828i)25-s − 1.87·27-s − 0.341·29-s + (−0.159 + 0.276i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.545 - 0.838i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.545 - 0.838i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $-0.545 - 0.838i$
Analytic conductor: \(57.6840\)
Root analytic conductor: \(7.59499\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{112} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :9/2),\ -0.545 - 0.838i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.9263366551\)
\(L(\frac12)\) \(\approx\) \(0.9263366551\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (-3.57e3 + 5.25e3i)T \)
good3 \( 1 + (-122. + 212. i)T + (-9.84e3 - 1.70e4i)T^{2} \)
5 \( 1 + (1.69e3 - 977. i)T + (9.76e5 - 1.69e6i)T^{2} \)
11 \( 1 + (4.58e4 + 2.64e4i)T + (1.17e9 + 2.04e9i)T^{2} \)
13 \( 1 + 1.92e5iT - 1.06e10T^{2} \)
17 \( 1 + (-5.05e5 - 2.91e5i)T + (5.92e10 + 1.02e11i)T^{2} \)
19 \( 1 + (4.29e4 + 7.43e4i)T + (-1.61e11 + 2.79e11i)T^{2} \)
23 \( 1 + (7.78e5 - 4.49e5i)T + (9.00e11 - 1.55e12i)T^{2} \)
29 \( 1 + 1.30e6T + 1.45e13T^{2} \)
31 \( 1 + (8.22e5 - 1.42e6i)T + (-1.32e13 - 2.28e13i)T^{2} \)
37 \( 1 + (8.73e6 + 1.51e7i)T + (-6.49e13 + 1.12e14i)T^{2} \)
41 \( 1 - 1.29e7iT - 3.27e14T^{2} \)
43 \( 1 - 3.51e7iT - 5.02e14T^{2} \)
47 \( 1 + (-5.60e5 - 9.71e5i)T + (-5.59e14 + 9.69e14i)T^{2} \)
53 \( 1 + (3.21e7 - 5.56e7i)T + (-1.64e15 - 2.85e15i)T^{2} \)
59 \( 1 + (-2.74e7 + 4.74e7i)T + (-4.33e15 - 7.50e15i)T^{2} \)
61 \( 1 + (1.77e7 - 1.02e7i)T + (5.84e15 - 1.01e16i)T^{2} \)
67 \( 1 + (-5.78e5 - 3.33e5i)T + (1.36e16 + 2.35e16i)T^{2} \)
71 \( 1 - 2.38e8iT - 4.58e16T^{2} \)
73 \( 1 + (-1.11e8 - 6.45e7i)T + (2.94e16 + 5.09e16i)T^{2} \)
79 \( 1 + (5.11e8 - 2.95e8i)T + (5.99e16 - 1.03e17i)T^{2} \)
83 \( 1 + 2.21e8T + 1.86e17T^{2} \)
89 \( 1 + (-8.81e8 + 5.08e8i)T + (1.75e17 - 3.03e17i)T^{2} \)
97 \( 1 - 3.81e8iT - 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.23554006111873603394668381100, −10.31943780574609051468635817263, −8.128726394439070775907609836335, −7.943539012569000496930994212735, −7.26975735949965885383024142117, −5.73773517971552103543874422552, −3.59207868130104080215723977152, −2.89684684858901846944001994030, −1.24057338646621314159755003292, −0.21633435581815496503535362449, 2.10177208354834541939399869100, 3.51105939115829139119479247786, 4.52638897477541723618341547556, 5.18388353264028806941891540923, 7.58811012981705078540454375248, 8.468740537891902103885230396672, 9.214496429515011898289329557906, 10.21902494556418655269899466521, 11.57594054762505131193292568319, 12.17716513174151557895169507492

Graph of the $Z$-function along the critical line