Properties

Label 2-112-28.3-c9-0-30
Degree $2$
Conductor $112$
Sign $-0.957 + 0.289i$
Analytic cond. $57.6840$
Root an. cond. $7.59499$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (29.1 − 50.5i)3-s + (2.15e3 − 1.24e3i)5-s + (−2.21e3 + 5.95e3i)7-s + (8.13e3 + 1.40e4i)9-s + (−7.19e4 − 4.15e4i)11-s + 8.97e4i·13-s − 1.45e5i·15-s + (−3.29e5 − 1.90e5i)17-s + (−5.17e5 − 8.97e5i)19-s + (2.36e5 + 2.85e5i)21-s + (−1.03e6 + 5.97e5i)23-s + (2.11e6 − 3.65e6i)25-s + 2.09e6·27-s − 3.28e6·29-s + (2.15e5 − 3.73e5i)31-s + ⋯
L(s)  = 1  + (0.208 − 0.360i)3-s + (1.54 − 0.889i)5-s + (−0.348 + 0.937i)7-s + (0.413 + 0.716i)9-s + (−1.48 − 0.855i)11-s + 0.871i·13-s − 0.739i·15-s + (−0.957 − 0.552i)17-s + (−0.911 − 1.57i)19-s + (0.265 + 0.320i)21-s + (−0.771 + 0.445i)23-s + (1.08 − 1.87i)25-s + 0.760·27-s − 0.861·29-s + (0.0419 − 0.0726i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.957 + 0.289i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.957 + 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $-0.957 + 0.289i$
Analytic conductor: \(57.6840\)
Root analytic conductor: \(7.59499\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{112} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :9/2),\ -0.957 + 0.289i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.9899746298\)
\(L(\frac12)\) \(\approx\) \(0.9899746298\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (2.21e3 - 5.95e3i)T \)
good3 \( 1 + (-29.1 + 50.5i)T + (-9.84e3 - 1.70e4i)T^{2} \)
5 \( 1 + (-2.15e3 + 1.24e3i)T + (9.76e5 - 1.69e6i)T^{2} \)
11 \( 1 + (7.19e4 + 4.15e4i)T + (1.17e9 + 2.04e9i)T^{2} \)
13 \( 1 - 8.97e4iT - 1.06e10T^{2} \)
17 \( 1 + (3.29e5 + 1.90e5i)T + (5.92e10 + 1.02e11i)T^{2} \)
19 \( 1 + (5.17e5 + 8.97e5i)T + (-1.61e11 + 2.79e11i)T^{2} \)
23 \( 1 + (1.03e6 - 5.97e5i)T + (9.00e11 - 1.55e12i)T^{2} \)
29 \( 1 + 3.28e6T + 1.45e13T^{2} \)
31 \( 1 + (-2.15e5 + 3.73e5i)T + (-1.32e13 - 2.28e13i)T^{2} \)
37 \( 1 + (-1.55e6 - 2.70e6i)T + (-6.49e13 + 1.12e14i)T^{2} \)
41 \( 1 + 6.97e6iT - 3.27e14T^{2} \)
43 \( 1 + 1.88e7iT - 5.02e14T^{2} \)
47 \( 1 + (2.26e7 + 3.91e7i)T + (-5.59e14 + 9.69e14i)T^{2} \)
53 \( 1 + (-9.74e5 + 1.68e6i)T + (-1.64e15 - 2.85e15i)T^{2} \)
59 \( 1 + (-6.20e7 + 1.07e8i)T + (-4.33e15 - 7.50e15i)T^{2} \)
61 \( 1 + (-2.30e7 + 1.33e7i)T + (5.84e15 - 1.01e16i)T^{2} \)
67 \( 1 + (-7.12e7 - 4.11e7i)T + (1.36e16 + 2.35e16i)T^{2} \)
71 \( 1 - 7.73e7iT - 4.58e16T^{2} \)
73 \( 1 + (1.35e8 + 7.79e7i)T + (2.94e16 + 5.09e16i)T^{2} \)
79 \( 1 + (4.27e8 - 2.46e8i)T + (5.99e16 - 1.03e17i)T^{2} \)
83 \( 1 + 2.68e8T + 1.86e17T^{2} \)
89 \( 1 + (-2.58e8 + 1.49e8i)T + (1.75e17 - 3.03e17i)T^{2} \)
97 \( 1 + 1.65e9iT - 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.36397883045246884790018310725, −10.14248971459706804268536007231, −9.089680709060560639608364735632, −8.436085029140388969962936611828, −6.78268918493198606462927462037, −5.60865444365917532357021423853, −4.84285084931249071032518241691, −2.43827145752812325510462746304, −2.00540559384190681382214708529, −0.20687509903621187103148895723, 1.71708321115142524039654561240, 2.85294490789652265257227706720, 4.20854709812433005944066831692, 5.80080911015719991403653261127, 6.67831839757830802951008985416, 7.904084988915697281007792930182, 9.576657273013371330201515970128, 10.33275017845199941125692200321, 10.57011497287974458389054616879, 12.81693994094780782901008792861

Graph of the $Z$-function along the critical line