Properties

Label 2-112-28.3-c9-0-22
Degree $2$
Conductor $112$
Sign $0.957 - 0.289i$
Analytic cond. $57.6840$
Root an. cond. $7.59499$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−29.1 + 50.5i)3-s + (2.15e3 − 1.24e3i)5-s + (2.21e3 − 5.95e3i)7-s + (8.13e3 + 1.40e4i)9-s + (7.19e4 + 4.15e4i)11-s + 8.97e4i·13-s + 1.45e5i·15-s + (−3.29e5 − 1.90e5i)17-s + (5.17e5 + 8.97e5i)19-s + (2.36e5 + 2.85e5i)21-s + (1.03e6 − 5.97e5i)23-s + (2.11e6 − 3.65e6i)25-s − 2.09e6·27-s − 3.28e6·29-s + (−2.15e5 + 3.73e5i)31-s + ⋯
L(s)  = 1  + (−0.208 + 0.360i)3-s + (1.54 − 0.889i)5-s + (0.348 − 0.937i)7-s + (0.413 + 0.716i)9-s + (1.48 + 0.855i)11-s + 0.871i·13-s + 0.739i·15-s + (−0.957 − 0.552i)17-s + (0.911 + 1.57i)19-s + (0.265 + 0.320i)21-s + (0.771 − 0.445i)23-s + (1.08 − 1.87i)25-s − 0.760·27-s − 0.861·29-s + (−0.0419 + 0.0726i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.957 - 0.289i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.957 - 0.289i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $0.957 - 0.289i$
Analytic conductor: \(57.6840\)
Root analytic conductor: \(7.59499\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{112} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :9/2),\ 0.957 - 0.289i)\)

Particular Values

\(L(5)\) \(\approx\) \(3.272051535\)
\(L(\frac12)\) \(\approx\) \(3.272051535\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (-2.21e3 + 5.95e3i)T \)
good3 \( 1 + (29.1 - 50.5i)T + (-9.84e3 - 1.70e4i)T^{2} \)
5 \( 1 + (-2.15e3 + 1.24e3i)T + (9.76e5 - 1.69e6i)T^{2} \)
11 \( 1 + (-7.19e4 - 4.15e4i)T + (1.17e9 + 2.04e9i)T^{2} \)
13 \( 1 - 8.97e4iT - 1.06e10T^{2} \)
17 \( 1 + (3.29e5 + 1.90e5i)T + (5.92e10 + 1.02e11i)T^{2} \)
19 \( 1 + (-5.17e5 - 8.97e5i)T + (-1.61e11 + 2.79e11i)T^{2} \)
23 \( 1 + (-1.03e6 + 5.97e5i)T + (9.00e11 - 1.55e12i)T^{2} \)
29 \( 1 + 3.28e6T + 1.45e13T^{2} \)
31 \( 1 + (2.15e5 - 3.73e5i)T + (-1.32e13 - 2.28e13i)T^{2} \)
37 \( 1 + (-1.55e6 - 2.70e6i)T + (-6.49e13 + 1.12e14i)T^{2} \)
41 \( 1 + 6.97e6iT - 3.27e14T^{2} \)
43 \( 1 - 1.88e7iT - 5.02e14T^{2} \)
47 \( 1 + (-2.26e7 - 3.91e7i)T + (-5.59e14 + 9.69e14i)T^{2} \)
53 \( 1 + (-9.74e5 + 1.68e6i)T + (-1.64e15 - 2.85e15i)T^{2} \)
59 \( 1 + (6.20e7 - 1.07e8i)T + (-4.33e15 - 7.50e15i)T^{2} \)
61 \( 1 + (-2.30e7 + 1.33e7i)T + (5.84e15 - 1.01e16i)T^{2} \)
67 \( 1 + (7.12e7 + 4.11e7i)T + (1.36e16 + 2.35e16i)T^{2} \)
71 \( 1 + 7.73e7iT - 4.58e16T^{2} \)
73 \( 1 + (1.35e8 + 7.79e7i)T + (2.94e16 + 5.09e16i)T^{2} \)
79 \( 1 + (-4.27e8 + 2.46e8i)T + (5.99e16 - 1.03e17i)T^{2} \)
83 \( 1 - 2.68e8T + 1.86e17T^{2} \)
89 \( 1 + (-2.58e8 + 1.49e8i)T + (1.75e17 - 3.03e17i)T^{2} \)
97 \( 1 + 1.65e9iT - 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.90451638005013205598601280520, −10.64552432905698180217455758479, −9.652147050010069124949214983765, −9.114351719440055131221569080894, −7.40621358538738486206546233529, −6.25117541080210053685217337958, −4.90286201183896084738473821369, −4.21144690782478476204590343181, −1.85246384967513785724382531746, −1.27270829643919295164726232523, 0.980486638799850890511241013490, 2.13233881450518511438491731007, 3.34859708197826392050081197421, 5.40227856249824642970299686529, 6.25007484238052812744219077153, 7.00378972336589688241567566501, 8.962786265544541200364279639344, 9.446907522143293787891346494545, 10.88652112411656873659284039886, 11.65758440886438467444322905529

Graph of the $Z$-function along the critical line