Properties

Label 2-112-28.3-c9-0-11
Degree $2$
Conductor $112$
Sign $-0.734 - 0.679i$
Analytic cond. $57.6840$
Root an. cond. $7.59499$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−116. + 202. i)3-s + (2.05e3 − 1.18e3i)5-s + (4.08e3 + 4.86e3i)7-s + (−1.75e4 − 3.03e4i)9-s + (−6.25e4 − 3.61e4i)11-s − 788. i·13-s + 5.54e5i·15-s + (−9.32e4 − 5.38e4i)17-s + (4.28e5 + 7.42e5i)19-s + (−1.46e6 + 2.57e5i)21-s + (1.32e6 − 7.63e5i)23-s + (1.82e6 − 3.16e6i)25-s + 3.59e6·27-s + 4.44e5·29-s + (−4.79e6 + 8.30e6i)31-s + ⋯
L(s)  = 1  + (−0.833 + 1.44i)3-s + (1.46 − 0.847i)5-s + (0.642 + 0.766i)7-s + (−0.890 − 1.54i)9-s + (−1.28 − 0.744i)11-s − 0.00765i·13-s + 2.82i·15-s + (−0.270 − 0.156i)17-s + (0.754 + 1.30i)19-s + (−1.64 + 0.288i)21-s + (0.984 − 0.568i)23-s + (0.935 − 1.62i)25-s + 1.30·27-s + 0.116·29-s + (−0.932 + 1.61i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.734 - 0.679i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.734 - 0.679i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $-0.734 - 0.679i$
Analytic conductor: \(57.6840\)
Root analytic conductor: \(7.59499\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{112} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :9/2),\ -0.734 - 0.679i)\)

Particular Values

\(L(5)\) \(\approx\) \(1.610352279\)
\(L(\frac12)\) \(\approx\) \(1.610352279\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (-4.08e3 - 4.86e3i)T \)
good3 \( 1 + (116. - 202. i)T + (-9.84e3 - 1.70e4i)T^{2} \)
5 \( 1 + (-2.05e3 + 1.18e3i)T + (9.76e5 - 1.69e6i)T^{2} \)
11 \( 1 + (6.25e4 + 3.61e4i)T + (1.17e9 + 2.04e9i)T^{2} \)
13 \( 1 + 788. iT - 1.06e10T^{2} \)
17 \( 1 + (9.32e4 + 5.38e4i)T + (5.92e10 + 1.02e11i)T^{2} \)
19 \( 1 + (-4.28e5 - 7.42e5i)T + (-1.61e11 + 2.79e11i)T^{2} \)
23 \( 1 + (-1.32e6 + 7.63e5i)T + (9.00e11 - 1.55e12i)T^{2} \)
29 \( 1 - 4.44e5T + 1.45e13T^{2} \)
31 \( 1 + (4.79e6 - 8.30e6i)T + (-1.32e13 - 2.28e13i)T^{2} \)
37 \( 1 + (-9.54e6 - 1.65e7i)T + (-6.49e13 + 1.12e14i)T^{2} \)
41 \( 1 - 1.87e7iT - 3.27e14T^{2} \)
43 \( 1 + 5.52e6iT - 5.02e14T^{2} \)
47 \( 1 + (-2.36e6 - 4.09e6i)T + (-5.59e14 + 9.69e14i)T^{2} \)
53 \( 1 + (-2.49e7 + 4.31e7i)T + (-1.64e15 - 2.85e15i)T^{2} \)
59 \( 1 + (5.13e7 - 8.89e7i)T + (-4.33e15 - 7.50e15i)T^{2} \)
61 \( 1 + (1.48e8 - 8.57e7i)T + (5.84e15 - 1.01e16i)T^{2} \)
67 \( 1 + (-6.43e6 - 3.71e6i)T + (1.36e16 + 2.35e16i)T^{2} \)
71 \( 1 + 4.93e7iT - 4.58e16T^{2} \)
73 \( 1 + (-1.48e8 - 8.55e7i)T + (2.94e16 + 5.09e16i)T^{2} \)
79 \( 1 + (8.02e7 - 4.63e7i)T + (5.99e16 - 1.03e17i)T^{2} \)
83 \( 1 + 6.52e7T + 1.86e17T^{2} \)
89 \( 1 + (4.65e8 - 2.68e8i)T + (1.75e17 - 3.03e17i)T^{2} \)
97 \( 1 - 1.06e9iT - 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.10814454802050479887867475499, −10.91880537033754382828486340089, −10.17481724064812369919773311062, −9.266055113415000801433848005714, −8.381708928071732980548085311817, −6.02112383859607170861166205540, −5.32280645702645631045561693043, −4.81398309965870962029009953940, −2.89518430437112711256442922656, −1.25746929880847955557442229373, 0.46342870077180361647152797399, 1.74668421902387373549802744874, 2.52994305133074851126513314809, 5.06876647070856522459040789131, 5.93186832592091829903004981193, 7.16111367083810941731714821065, 7.50537245460226257110619222706, 9.491434961571996007316720780686, 10.76999040226684785821274516494, 11.20612159024804652456120085367

Graph of the $Z$-function along the critical line