L(s) = 1 | + (131. + 227. i)3-s + (53.0 − 91.8i)5-s + (992. + 6.27e3i)7-s + (−2.46e4 + 4.27e4i)9-s + (4.53e4 + 7.85e4i)11-s − 6.65e4·13-s + 2.78e4·15-s + (−2.12e5 − 3.68e5i)17-s + (2.70e5 − 4.68e5i)19-s + (−1.29e6 + 1.05e6i)21-s + (−5.87e5 + 1.01e6i)23-s + (9.70e5 + 1.68e6i)25-s − 7.81e6·27-s + 6.66e6·29-s + (8.35e5 + 1.44e6i)31-s + ⋯ |
L(s) = 1 | + (0.936 + 1.62i)3-s + (0.0379 − 0.0657i)5-s + (0.156 + 0.987i)7-s + (−1.25 + 2.17i)9-s + (0.934 + 1.61i)11-s − 0.646·13-s + 0.142·15-s + (−0.618 − 1.07i)17-s + (0.475 − 0.824i)19-s + (−1.45 + 1.17i)21-s + (−0.437 + 0.758i)23-s + (0.497 + 0.861i)25-s − 2.82·27-s + 1.75·29-s + (0.162 + 0.281i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.975 + 0.218i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.975 + 0.218i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(2.623752391\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.623752391\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-992. - 6.27e3i)T \) |
good | 3 | \( 1 + (-131. - 227. i)T + (-9.84e3 + 1.70e4i)T^{2} \) |
| 5 | \( 1 + (-53.0 + 91.8i)T + (-9.76e5 - 1.69e6i)T^{2} \) |
| 11 | \( 1 + (-4.53e4 - 7.85e4i)T + (-1.17e9 + 2.04e9i)T^{2} \) |
| 13 | \( 1 + 6.65e4T + 1.06e10T^{2} \) |
| 17 | \( 1 + (2.12e5 + 3.68e5i)T + (-5.92e10 + 1.02e11i)T^{2} \) |
| 19 | \( 1 + (-2.70e5 + 4.68e5i)T + (-1.61e11 - 2.79e11i)T^{2} \) |
| 23 | \( 1 + (5.87e5 - 1.01e6i)T + (-9.00e11 - 1.55e12i)T^{2} \) |
| 29 | \( 1 - 6.66e6T + 1.45e13T^{2} \) |
| 31 | \( 1 + (-8.35e5 - 1.44e6i)T + (-1.32e13 + 2.28e13i)T^{2} \) |
| 37 | \( 1 + (-2.81e6 + 4.86e6i)T + (-6.49e13 - 1.12e14i)T^{2} \) |
| 41 | \( 1 + 1.30e7T + 3.27e14T^{2} \) |
| 43 | \( 1 + 1.16e7T + 5.02e14T^{2} \) |
| 47 | \( 1 + (-1.35e6 + 2.35e6i)T + (-5.59e14 - 9.69e14i)T^{2} \) |
| 53 | \( 1 + (-1.58e7 - 2.74e7i)T + (-1.64e15 + 2.85e15i)T^{2} \) |
| 59 | \( 1 + (1.64e7 + 2.84e7i)T + (-4.33e15 + 7.50e15i)T^{2} \) |
| 61 | \( 1 + (-8.57e7 + 1.48e8i)T + (-5.84e15 - 1.01e16i)T^{2} \) |
| 67 | \( 1 + (2.26e7 + 3.92e7i)T + (-1.36e16 + 2.35e16i)T^{2} \) |
| 71 | \( 1 - 2.03e8T + 4.58e16T^{2} \) |
| 73 | \( 1 + (3.63e7 + 6.29e7i)T + (-2.94e16 + 5.09e16i)T^{2} \) |
| 79 | \( 1 + (-6.81e7 + 1.18e8i)T + (-5.99e16 - 1.03e17i)T^{2} \) |
| 83 | \( 1 + 5.10e8T + 1.86e17T^{2} \) |
| 89 | \( 1 + (1.52e8 - 2.64e8i)T + (-1.75e17 - 3.03e17i)T^{2} \) |
| 97 | \( 1 + 7.58e8T + 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.22319547787024109315566163651, −11.26171515069090092404771113411, −9.770801307898684284205854324814, −9.467708839454301980013695149759, −8.533760009508097410060831347748, −7.08673248751273639957001391944, −5.08049078944686078167872514863, −4.55702061338384597593682447024, −3.08510538530223176958932304674, −2.09012841552664537500374336821,
0.58610998537211277961640202215, 1.39866064904950480261906036560, 2.78024742839554718423132102264, 3.93752361016860938190304054916, 6.22144658881345040431790164760, 6.83570479506861873911002412380, 8.175900004704342696688879183229, 8.557812627098329687209652093917, 10.19385147887435405770880931820, 11.58894018978761380715811197011