L(s) = 1 | + 168.·3-s − 1.69e3i·5-s + (6.13e3 − 1.64e3i)7-s + 8.85e3·9-s − 4.52e4i·11-s − 4.92e4i·13-s − 2.86e5i·15-s + 2.95e5i·17-s + 4.60e5·19-s + (1.03e6 − 2.77e5i)21-s − 1.79e6i·23-s − 9.15e5·25-s − 1.82e6·27-s − 5.43e6·29-s + 4.36e6·31-s + ⋯ |
L(s) = 1 | + 1.20·3-s − 1.21i·5-s + (0.966 − 0.258i)7-s + 0.449·9-s − 0.931i·11-s − 0.477i·13-s − 1.45i·15-s + 0.858i·17-s + 0.810·19-s + (1.16 − 0.311i)21-s − 1.33i·23-s − 0.468·25-s − 0.662·27-s − 1.42·29-s + 0.849·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.259 + 0.965i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.259 + 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(3.321690622\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.321690622\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-6.13e3 + 1.64e3i)T \) |
good | 3 | \( 1 - 168.T + 1.96e4T^{2} \) |
| 5 | \( 1 + 1.69e3iT - 1.95e6T^{2} \) |
| 11 | \( 1 + 4.52e4iT - 2.35e9T^{2} \) |
| 13 | \( 1 + 4.92e4iT - 1.06e10T^{2} \) |
| 17 | \( 1 - 2.95e5iT - 1.18e11T^{2} \) |
| 19 | \( 1 - 4.60e5T + 3.22e11T^{2} \) |
| 23 | \( 1 + 1.79e6iT - 1.80e12T^{2} \) |
| 29 | \( 1 + 5.43e6T + 1.45e13T^{2} \) |
| 31 | \( 1 - 4.36e6T + 2.64e13T^{2} \) |
| 37 | \( 1 + 1.38e7T + 1.29e14T^{2} \) |
| 41 | \( 1 - 6.11e6iT - 3.27e14T^{2} \) |
| 43 | \( 1 - 1.02e7iT - 5.02e14T^{2} \) |
| 47 | \( 1 - 1.82e6T + 1.11e15T^{2} \) |
| 53 | \( 1 - 8.73e7T + 3.29e15T^{2} \) |
| 59 | \( 1 + 1.13e8T + 8.66e15T^{2} \) |
| 61 | \( 1 + 3.81e7iT - 1.16e16T^{2} \) |
| 67 | \( 1 - 2.09e8iT - 2.72e16T^{2} \) |
| 71 | \( 1 + 1.24e8iT - 4.58e16T^{2} \) |
| 73 | \( 1 + 2.09e8iT - 5.88e16T^{2} \) |
| 79 | \( 1 + 4.05e8iT - 1.19e17T^{2} \) |
| 83 | \( 1 + 1.21e8T + 1.86e17T^{2} \) |
| 89 | \( 1 + 1.05e9iT - 3.50e17T^{2} \) |
| 97 | \( 1 + 7.91e8iT - 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.61032121144350789265808162299, −10.37434310614245396291797001713, −8.923708776712704576391351954275, −8.474857719580154840079553199784, −7.65375648423218011756974124994, −5.71306574630151163755735657829, −4.52730892507995152485848085924, −3.29669932712509982474218837345, −1.82691032429998699183075536502, −0.69310417546195827036836856259,
1.74340659175026725668089706585, 2.65383663711003301479652834327, 3.77001505549154399038824811023, 5.31450521188441031766397570030, 7.10806624880460599696992026998, 7.66564722165166718085813618798, 8.978231602208620568559189131663, 9.852623592189087550323131205057, 11.14739044147292312288073706987, 11.97219943795957508846789470866