Properties

Label 2-112-28.27-c9-0-35
Degree $2$
Conductor $112$
Sign $-0.429 - 0.902i$
Analytic cond. $57.6840$
Root an. cond. $7.59499$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 18.7·3-s − 1.16e3i·5-s + (−2.73e3 − 5.73e3i)7-s − 1.93e4·9-s − 2.83e4i·11-s − 1.18e5i·13-s + 2.19e4i·15-s + 1.31e5i·17-s − 8.87e5·19-s + (5.13e4 + 1.07e5i)21-s − 1.24e5i·23-s + 5.85e5·25-s + 7.33e5·27-s + 7.07e5·29-s + 6.60e6·31-s + ⋯
L(s)  = 1  − 0.133·3-s − 0.836i·5-s + (−0.429 − 0.902i)7-s − 0.982·9-s − 0.584i·11-s − 1.14i·13-s + 0.112i·15-s + 0.382i·17-s − 1.56·19-s + (0.0576 + 0.120i)21-s − 0.0928i·23-s + 0.300·25-s + 0.265·27-s + 0.185·29-s + 1.28·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.429 - 0.902i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.429 - 0.902i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $-0.429 - 0.902i$
Analytic conductor: \(57.6840\)
Root analytic conductor: \(7.59499\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{112} (111, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :9/2),\ -0.429 - 0.902i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.2400960888\)
\(L(\frac12)\) \(\approx\) \(0.2400960888\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (2.73e3 + 5.73e3i)T \)
good3 \( 1 + 18.7T + 1.96e4T^{2} \)
5 \( 1 + 1.16e3iT - 1.95e6T^{2} \)
11 \( 1 + 2.83e4iT - 2.35e9T^{2} \)
13 \( 1 + 1.18e5iT - 1.06e10T^{2} \)
17 \( 1 - 1.31e5iT - 1.18e11T^{2} \)
19 \( 1 + 8.87e5T + 3.22e11T^{2} \)
23 \( 1 + 1.24e5iT - 1.80e12T^{2} \)
29 \( 1 - 7.07e5T + 1.45e13T^{2} \)
31 \( 1 - 6.60e6T + 2.64e13T^{2} \)
37 \( 1 + 4.09e6T + 1.29e14T^{2} \)
41 \( 1 + 2.80e7iT - 3.27e14T^{2} \)
43 \( 1 - 2.27e7iT - 5.02e14T^{2} \)
47 \( 1 + 1.10e7T + 1.11e15T^{2} \)
53 \( 1 - 6.43e7T + 3.29e15T^{2} \)
59 \( 1 + 1.27e8T + 8.66e15T^{2} \)
61 \( 1 + 1.33e5iT - 1.16e16T^{2} \)
67 \( 1 - 1.77e8iT - 2.72e16T^{2} \)
71 \( 1 - 3.23e8iT - 4.58e16T^{2} \)
73 \( 1 + 2.07e8iT - 5.88e16T^{2} \)
79 \( 1 - 4.45e8iT - 1.19e17T^{2} \)
83 \( 1 + 3.35e8T + 1.86e17T^{2} \)
89 \( 1 - 4.63e8iT - 3.50e17T^{2} \)
97 \( 1 - 5.94e8iT - 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.99162413362384707436199509760, −10.24034536388262308209197742039, −8.766064432467662852817009651898, −8.102994966629307884379928757920, −6.52799373604533135667700347094, −5.46967100738319004894882687779, −4.16565335459111783309179085651, −2.83913970524578915645369762860, −0.955259392360629719992742344500, −0.07264240409865662307067801800, 2.09736391520940589642330313050, 3.02875242271073377491997907192, 4.64779423954121239274393489088, 6.12983811381882018849530863323, 6.80638295779685134467260224987, 8.395480760659118198897494941110, 9.333373308845911460674142045923, 10.53618257868778071498267523438, 11.57261466861179463522708036884, 12.31968247773334878432257478603

Graph of the $Z$-function along the critical line