L(s) = 1 | − 18.7·3-s − 1.16e3i·5-s + (−2.73e3 − 5.73e3i)7-s − 1.93e4·9-s − 2.83e4i·11-s − 1.18e5i·13-s + 2.19e4i·15-s + 1.31e5i·17-s − 8.87e5·19-s + (5.13e4 + 1.07e5i)21-s − 1.24e5i·23-s + 5.85e5·25-s + 7.33e5·27-s + 7.07e5·29-s + 6.60e6·31-s + ⋯ |
L(s) = 1 | − 0.133·3-s − 0.836i·5-s + (−0.429 − 0.902i)7-s − 0.982·9-s − 0.584i·11-s − 1.14i·13-s + 0.112i·15-s + 0.382i·17-s − 1.56·19-s + (0.0576 + 0.120i)21-s − 0.0928i·23-s + 0.300·25-s + 0.265·27-s + 0.185·29-s + 1.28·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.429 - 0.902i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.429 - 0.902i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(0.2400960888\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2400960888\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (2.73e3 + 5.73e3i)T \) |
good | 3 | \( 1 + 18.7T + 1.96e4T^{2} \) |
| 5 | \( 1 + 1.16e3iT - 1.95e6T^{2} \) |
| 11 | \( 1 + 2.83e4iT - 2.35e9T^{2} \) |
| 13 | \( 1 + 1.18e5iT - 1.06e10T^{2} \) |
| 17 | \( 1 - 1.31e5iT - 1.18e11T^{2} \) |
| 19 | \( 1 + 8.87e5T + 3.22e11T^{2} \) |
| 23 | \( 1 + 1.24e5iT - 1.80e12T^{2} \) |
| 29 | \( 1 - 7.07e5T + 1.45e13T^{2} \) |
| 31 | \( 1 - 6.60e6T + 2.64e13T^{2} \) |
| 37 | \( 1 + 4.09e6T + 1.29e14T^{2} \) |
| 41 | \( 1 + 2.80e7iT - 3.27e14T^{2} \) |
| 43 | \( 1 - 2.27e7iT - 5.02e14T^{2} \) |
| 47 | \( 1 + 1.10e7T + 1.11e15T^{2} \) |
| 53 | \( 1 - 6.43e7T + 3.29e15T^{2} \) |
| 59 | \( 1 + 1.27e8T + 8.66e15T^{2} \) |
| 61 | \( 1 + 1.33e5iT - 1.16e16T^{2} \) |
| 67 | \( 1 - 1.77e8iT - 2.72e16T^{2} \) |
| 71 | \( 1 - 3.23e8iT - 4.58e16T^{2} \) |
| 73 | \( 1 + 2.07e8iT - 5.88e16T^{2} \) |
| 79 | \( 1 - 4.45e8iT - 1.19e17T^{2} \) |
| 83 | \( 1 + 3.35e8T + 1.86e17T^{2} \) |
| 89 | \( 1 - 4.63e8iT - 3.50e17T^{2} \) |
| 97 | \( 1 - 5.94e8iT - 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99162413362384707436199509760, −10.24034536388262308209197742039, −8.766064432467662852817009651898, −8.102994966629307884379928757920, −6.52799373604533135667700347094, −5.46967100738319004894882687779, −4.16565335459111783309179085651, −2.83913970524578915645369762860, −0.955259392360629719992742344500, −0.07264240409865662307067801800,
2.09736391520940589642330313050, 3.02875242271073377491997907192, 4.64779423954121239274393489088, 6.12983811381882018849530863323, 6.80638295779685134467260224987, 8.395480760659118198897494941110, 9.333373308845911460674142045923, 10.53618257868778071498267523438, 11.57261466861179463522708036884, 12.31968247773334878432257478603