L(s) = 1 | + 207.·3-s − 631. i·5-s + (5.15e3 − 3.71e3i)7-s + 2.34e4·9-s + 8.48e4i·11-s + 7.82e4i·13-s − 1.31e5i·15-s + 6.16e5i·17-s − 4.79e5·19-s + (1.07e6 − 7.71e5i)21-s + 5.99e5i·23-s + 1.55e6·25-s + 7.79e5·27-s + 3.67e6·29-s + 4.75e6·31-s + ⋯ |
L(s) = 1 | + 1.48·3-s − 0.451i·5-s + (0.811 − 0.584i)7-s + 1.19·9-s + 1.74i·11-s + 0.759i·13-s − 0.668i·15-s + 1.79i·17-s − 0.844·19-s + (1.20 − 0.865i)21-s + 0.446i·23-s + 0.795·25-s + 0.282·27-s + 0.963·29-s + 0.924·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.811 - 0.584i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.811 - 0.584i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(4.012529045\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.012529045\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-5.15e3 + 3.71e3i)T \) |
good | 3 | \( 1 - 207.T + 1.96e4T^{2} \) |
| 5 | \( 1 + 631. iT - 1.95e6T^{2} \) |
| 11 | \( 1 - 8.48e4iT - 2.35e9T^{2} \) |
| 13 | \( 1 - 7.82e4iT - 1.06e10T^{2} \) |
| 17 | \( 1 - 6.16e5iT - 1.18e11T^{2} \) |
| 19 | \( 1 + 4.79e5T + 3.22e11T^{2} \) |
| 23 | \( 1 - 5.99e5iT - 1.80e12T^{2} \) |
| 29 | \( 1 - 3.67e6T + 1.45e13T^{2} \) |
| 31 | \( 1 - 4.75e6T + 2.64e13T^{2} \) |
| 37 | \( 1 - 1.17e7T + 1.29e14T^{2} \) |
| 41 | \( 1 + 3.88e5iT - 3.27e14T^{2} \) |
| 43 | \( 1 + 3.80e7iT - 5.02e14T^{2} \) |
| 47 | \( 1 - 1.49e7T + 1.11e15T^{2} \) |
| 53 | \( 1 + 1.09e8T + 3.29e15T^{2} \) |
| 59 | \( 1 - 2.94e7T + 8.66e15T^{2} \) |
| 61 | \( 1 + 1.24e8iT - 1.16e16T^{2} \) |
| 67 | \( 1 - 1.52e8iT - 2.72e16T^{2} \) |
| 71 | \( 1 - 7.56e7iT - 4.58e16T^{2} \) |
| 73 | \( 1 + 2.09e8iT - 5.88e16T^{2} \) |
| 79 | \( 1 - 4.17e8iT - 1.19e17T^{2} \) |
| 83 | \( 1 - 6.01e8T + 1.86e17T^{2} \) |
| 89 | \( 1 - 4.52e8iT - 3.50e17T^{2} \) |
| 97 | \( 1 + 7.61e8iT - 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.23869547831314287543128230342, −10.65297443799069804398654515915, −9.655482005771080141936528804249, −8.580885234949874452321037231965, −7.893321120753615590004455145269, −6.75295855248702847619393716910, −4.64620113653014219364934808005, −3.96346801078378561751659913669, −2.21897033975595802903637499371, −1.46870395604250175064650086190,
0.870364078575986041019675190817, 2.65355493915312194984036665277, 3.02605800889126059462067304688, 4.73509604510712212175562519909, 6.25019276609546130790543356676, 7.81240448543944637919945443448, 8.438100974916722877379620184896, 9.288119963794495610536631249798, 10.69007389153408041322802836809, 11.63319632116263067305018607828