Properties

Label 2-112-1.1-c9-0-21
Degree $2$
Conductor $112$
Sign $-1$
Analytic cond. $57.6840$
Root an. cond. $7.59499$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 134.·3-s − 1.08e3·5-s − 2.40e3·7-s − 1.70e3·9-s + 8.46e4·11-s − 1.13e5·13-s − 1.46e5·15-s + 4.62e5·17-s + 8.62e5·19-s − 3.21e5·21-s − 2.32e6·23-s − 7.66e5·25-s − 2.86e6·27-s − 3.09e6·29-s − 7.49e6·31-s + 1.13e7·33-s + 2.61e6·35-s + 7.68e6·37-s − 1.51e7·39-s − 2.07e7·41-s − 3.51e7·43-s + 1.86e6·45-s + 8.14e6·47-s + 5.76e6·49-s + 6.20e7·51-s + 5.77e7·53-s − 9.22e7·55-s + ⋯
L(s)  = 1  + 0.955·3-s − 0.779·5-s − 0.377·7-s − 0.0868·9-s + 1.74·11-s − 1.09·13-s − 0.744·15-s + 1.34·17-s + 1.51·19-s − 0.361·21-s − 1.73·23-s − 0.392·25-s − 1.03·27-s − 0.812·29-s − 1.45·31-s + 1.66·33-s + 0.294·35-s + 0.674·37-s − 1.05·39-s − 1.14·41-s − 1.56·43-s + 0.0677·45-s + 0.243·47-s + 0.142·49-s + 1.28·51-s + 1.00·53-s − 1.35·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $-1$
Analytic conductor: \(57.6840\)
Root analytic conductor: \(7.59499\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 112,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 2.40e3T \)
good3 \( 1 - 134.T + 1.96e4T^{2} \)
5 \( 1 + 1.08e3T + 1.95e6T^{2} \)
11 \( 1 - 8.46e4T + 2.35e9T^{2} \)
13 \( 1 + 1.13e5T + 1.06e10T^{2} \)
17 \( 1 - 4.62e5T + 1.18e11T^{2} \)
19 \( 1 - 8.62e5T + 3.22e11T^{2} \)
23 \( 1 + 2.32e6T + 1.80e12T^{2} \)
29 \( 1 + 3.09e6T + 1.45e13T^{2} \)
31 \( 1 + 7.49e6T + 2.64e13T^{2} \)
37 \( 1 - 7.68e6T + 1.29e14T^{2} \)
41 \( 1 + 2.07e7T + 3.27e14T^{2} \)
43 \( 1 + 3.51e7T + 5.02e14T^{2} \)
47 \( 1 - 8.14e6T + 1.11e15T^{2} \)
53 \( 1 - 5.77e7T + 3.29e15T^{2} \)
59 \( 1 + 3.77e7T + 8.66e15T^{2} \)
61 \( 1 + 5.84e7T + 1.16e16T^{2} \)
67 \( 1 + 2.10e8T + 2.72e16T^{2} \)
71 \( 1 - 1.24e8T + 4.58e16T^{2} \)
73 \( 1 + 3.62e8T + 5.88e16T^{2} \)
79 \( 1 + 1.96e8T + 1.19e17T^{2} \)
83 \( 1 - 6.31e8T + 1.86e17T^{2} \)
89 \( 1 + 3.18e8T + 3.50e17T^{2} \)
97 \( 1 - 7.50e7T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.83018583796054224316139370027, −9.869308321892083128303585578389, −9.251345612431190473312110108192, −7.979157824613526306357435753845, −7.24047002451872270653122063240, −5.67515924200277647867286895261, −3.91145954367286356086998226748, −3.25870168234043045645621683375, −1.66317198419316108701481729005, 0, 1.66317198419316108701481729005, 3.25870168234043045645621683375, 3.91145954367286356086998226748, 5.67515924200277647867286895261, 7.24047002451872270653122063240, 7.979157824613526306357435753845, 9.251345612431190473312110108192, 9.869308321892083128303585578389, 11.83018583796054224316139370027

Graph of the $Z$-function along the critical line