Properties

Label 2-112-1.1-c9-0-13
Degree $2$
Conductor $112$
Sign $-1$
Analytic cond. $57.6840$
Root an. cond. $7.59499$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 128.·3-s − 1.33e3·5-s − 2.40e3·7-s − 3.18e3·9-s + 2.22e4·11-s + 1.85e5·13-s + 1.71e5·15-s + 3.51e5·17-s − 1.10e6·19-s + 3.08e5·21-s + 1.99e6·23-s − 1.75e5·25-s + 2.93e6·27-s + 3.18e6·29-s − 7.42e6·31-s − 2.86e6·33-s + 3.20e6·35-s + 1.11e7·37-s − 2.37e7·39-s + 2.22e7·41-s − 1.98e7·43-s + 4.24e6·45-s + 5.69e5·47-s + 5.76e6·49-s − 4.51e7·51-s − 6.76e7·53-s − 2.97e7·55-s + ⋯
L(s)  = 1  − 0.915·3-s − 0.954·5-s − 0.377·7-s − 0.161·9-s + 0.458·11-s + 1.79·13-s + 0.873·15-s + 1.02·17-s − 1.95·19-s + 0.346·21-s + 1.48·23-s − 0.0897·25-s + 1.06·27-s + 0.835·29-s − 1.44·31-s − 0.420·33-s + 0.360·35-s + 0.978·37-s − 1.64·39-s + 1.23·41-s − 0.886·43-s + 0.154·45-s + 0.0170·47-s + 0.142·49-s − 0.935·51-s − 1.17·53-s − 0.437·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $-1$
Analytic conductor: \(57.6840\)
Root analytic conductor: \(7.59499\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 112,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 2.40e3T \)
good3 \( 1 + 128.T + 1.96e4T^{2} \)
5 \( 1 + 1.33e3T + 1.95e6T^{2} \)
11 \( 1 - 2.22e4T + 2.35e9T^{2} \)
13 \( 1 - 1.85e5T + 1.06e10T^{2} \)
17 \( 1 - 3.51e5T + 1.18e11T^{2} \)
19 \( 1 + 1.10e6T + 3.22e11T^{2} \)
23 \( 1 - 1.99e6T + 1.80e12T^{2} \)
29 \( 1 - 3.18e6T + 1.45e13T^{2} \)
31 \( 1 + 7.42e6T + 2.64e13T^{2} \)
37 \( 1 - 1.11e7T + 1.29e14T^{2} \)
41 \( 1 - 2.22e7T + 3.27e14T^{2} \)
43 \( 1 + 1.98e7T + 5.02e14T^{2} \)
47 \( 1 - 5.69e5T + 1.11e15T^{2} \)
53 \( 1 + 6.76e7T + 3.29e15T^{2} \)
59 \( 1 + 6.89e7T + 8.66e15T^{2} \)
61 \( 1 + 9.40e7T + 1.16e16T^{2} \)
67 \( 1 + 7.82e7T + 2.72e16T^{2} \)
71 \( 1 + 1.61e8T + 4.58e16T^{2} \)
73 \( 1 - 1.68e8T + 5.88e16T^{2} \)
79 \( 1 - 3.52e8T + 1.19e17T^{2} \)
83 \( 1 + 1.80e8T + 1.86e17T^{2} \)
89 \( 1 + 8.90e8T + 3.50e17T^{2} \)
97 \( 1 - 5.34e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.16315651513155607333841425414, −10.77694872250954351750385231030, −9.054200529902567469193127862272, −8.087944277824718337824421404718, −6.63296039325251576986170702789, −5.84337973327072924477127106774, −4.34301915678803630344977464167, −3.26602187613901201644201885769, −1.14491733132925330115578001123, 0, 1.14491733132925330115578001123, 3.26602187613901201644201885769, 4.34301915678803630344977464167, 5.84337973327072924477127106774, 6.63296039325251576986170702789, 8.087944277824718337824421404718, 9.054200529902567469193127862272, 10.77694872250954351750385231030, 11.16315651513155607333841425414

Graph of the $Z$-function along the critical line