Properties

Label 2-112-1.1-c9-0-26
Degree $2$
Conductor $112$
Sign $-1$
Analytic cond. $57.6840$
Root an. cond. $7.59499$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Error: no document with id 267749498 found in table mf_hecke_traces.

Normalization:  

Dirichlet series

L(s)  = 1  + 195.·3-s + 200.·5-s + 2.40e3·7-s + 1.86e4·9-s − 6.38e4·11-s − 1.64e5·13-s + 3.93e4·15-s − 3.62e5·17-s + 4.36e5·19-s + 4.70e5·21-s − 9.18e5·23-s − 1.91e6·25-s − 2.00e5·27-s − 3.68e6·29-s − 3.47e6·31-s − 1.25e7·33-s + 4.82e5·35-s + 1.88e7·37-s − 3.22e7·39-s + 2.40e6·41-s + 1.25e7·43-s + 3.74e6·45-s + 5.54e7·47-s + 5.76e6·49-s − 7.10e7·51-s − 9.26e7·53-s − 1.28e7·55-s + ⋯
L(s)  = 1  + 1.39·3-s + 0.143·5-s + 0.377·7-s + 0.948·9-s − 1.31·11-s − 1.59·13-s + 0.200·15-s − 1.05·17-s + 0.768·19-s + 0.527·21-s − 0.684·23-s − 0.979·25-s − 0.0724·27-s − 0.967·29-s − 0.676·31-s − 1.83·33-s + 0.0543·35-s + 1.65·37-s − 2.23·39-s + 0.133·41-s + 0.558·43-s + 0.136·45-s + 1.65·47-s + 0.142·49-s − 1.47·51-s − 1.61·53-s − 0.188·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $-1$
Analytic conductor: \(57.6840\)
Root analytic conductor: \(7.59499\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 112,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - 2.40e3T \)
good3 \( 1 - 195.T + 1.96e4T^{2} \)
5 \( 1 - 200.T + 1.95e6T^{2} \)
11 \( 1 + 6.38e4T + 2.35e9T^{2} \)
13 \( 1 + 1.64e5T + 1.06e10T^{2} \)
17 \( 1 + 3.62e5T + 1.18e11T^{2} \)
19 \( 1 - 4.36e5T + 3.22e11T^{2} \)
23 \( 1 + 9.18e5T + 1.80e12T^{2} \)
29 \( 1 + 3.68e6T + 1.45e13T^{2} \)
31 \( 1 + 3.47e6T + 2.64e13T^{2} \)
37 \( 1 - 1.88e7T + 1.29e14T^{2} \)
41 \( 1 - 2.40e6T + 3.27e14T^{2} \)
43 \( 1 - 1.25e7T + 5.02e14T^{2} \)
47 \( 1 - 5.54e7T + 1.11e15T^{2} \)
53 \( 1 + 9.26e7T + 3.29e15T^{2} \)
59 \( 1 - 2.52e7T + 8.66e15T^{2} \)
61 \( 1 - 6.93e7T + 1.16e16T^{2} \)
67 \( 1 - 2.33e7T + 2.72e16T^{2} \)
71 \( 1 - 1.06e8T + 4.58e16T^{2} \)
73 \( 1 + 2.10e8T + 5.88e16T^{2} \)
79 \( 1 - 1.49e5T + 1.19e17T^{2} \)
83 \( 1 + 5.21e8T + 1.86e17T^{2} \)
89 \( 1 - 2.98e8T + 3.50e17T^{2} \)
97 \( 1 + 8.95e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.26374988876998013529395826435, −9.941204736437172287083283808190, −9.205560221289822248806860569574, −7.910607877853971228976703146554, −7.44378078047853786658053056306, −5.51060645804642308078069050117, −4.21557918617837923510654951642, −2.70343406214420550822216851917, −2.07548256727593094130680212689, 0, 2.07548256727593094130680212689, 2.70343406214420550822216851917, 4.21557918617837923510654951642, 5.51060645804642308078069050117, 7.44378078047853786658053056306, 7.910607877853971228976703146554, 9.205560221289822248806860569574, 9.941204736437172287083283808190, 11.26374988876998013529395826435

Graph of the $Z$-function along the critical line