Properties

Label 8-1110e4-1.1-c1e4-0-7
Degree $8$
Conductor $1.518\times 10^{12}$
Sign $1$
Analytic cond. $6171.63$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s − 2·4-s − 4·7-s + 10·9-s − 4·11-s + 8·12-s + 3·16-s + 16·21-s − 2·25-s − 20·27-s + 8·28-s + 16·33-s − 20·36-s + 2·37-s + 14·41-s + 8·44-s − 12·48-s − 18·49-s − 8·53-s − 40·63-s − 4·64-s + 4·67-s − 24·71-s + 18·73-s + 8·75-s + 16·77-s + 35·81-s + ⋯
L(s)  = 1  − 2.30·3-s − 4-s − 1.51·7-s + 10/3·9-s − 1.20·11-s + 2.30·12-s + 3/4·16-s + 3.49·21-s − 2/5·25-s − 3.84·27-s + 1.51·28-s + 2.78·33-s − 3.33·36-s + 0.328·37-s + 2.18·41-s + 1.20·44-s − 1.73·48-s − 2.57·49-s − 1.09·53-s − 5.03·63-s − 1/2·64-s + 0.488·67-s − 2.84·71-s + 2.10·73-s + 0.923·75-s + 1.82·77-s + 35/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(6171.63\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.2519064147\)
\(L(\frac12)\) \(\approx\) \(0.2519064147\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_1$ \( ( 1 + T )^{4} \)
5$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
good7$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
11$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
13$D_4\times C_2$ \( 1 - 15 T^{2} + 376 T^{4} - 15 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 - 33 T^{2} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 15 T^{2} - 116 T^{4} - 15 p^{2} T^{6} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 31 T^{2} + 404 T^{4} - 31 p^{2} T^{6} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 55 T^{2} + 1544 T^{4} - 55 p^{2} T^{6} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 63 T^{2} + 2020 T^{4} - 63 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 7 T + 76 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 75 T^{2} + 2896 T^{4} - 75 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$D_{4}$ \( ( 1 + 4 T + 37 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 - 88 T^{2} + 8606 T^{4} - 88 p^{2} T^{6} + p^{4} T^{8} \)
61$D_4\times C_2$ \( 1 - 63 T^{2} + 3160 T^{4} - 63 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 - 2 T + 62 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
73$D_{4}$ \( ( 1 - 9 T + 148 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 152 T^{2} + 15630 T^{4} - 152 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 - 5 T + 154 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_4\times C_2$ \( 1 + 13 T^{2} + 2580 T^{4} + 13 p^{2} T^{6} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 - 267 T^{2} + 33556 T^{4} - 267 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.77229265427398682634036357251, −6.76973644957434525780156071947, −6.52132167812112477064575626731, −6.30683605479659631785898456153, −6.30067219957520895055800718777, −5.70299252086931512555366913503, −5.60871968477146653844467978363, −5.59585216326895650393756781464, −5.44389636417750603702632394959, −4.96127408925626484358602737948, −4.81837070123632901181594673101, −4.60310440351507024199118550179, −4.30405368165470605622528409320, −4.22812394778794173437952286527, −3.89515936692871272690321920833, −3.51964581800776394351998655455, −3.19455780887877874026154625075, −3.05647866067484645448873503188, −2.80517256711216622281089036468, −2.16089664843986875794577008380, −2.06713684449809413188029944956, −1.29908672836102407920022994857, −1.24285261405512125774224792809, −0.39298030441494478664562350435, −0.34332338696476580850486373978, 0.34332338696476580850486373978, 0.39298030441494478664562350435, 1.24285261405512125774224792809, 1.29908672836102407920022994857, 2.06713684449809413188029944956, 2.16089664843986875794577008380, 2.80517256711216622281089036468, 3.05647866067484645448873503188, 3.19455780887877874026154625075, 3.51964581800776394351998655455, 3.89515936692871272690321920833, 4.22812394778794173437952286527, 4.30405368165470605622528409320, 4.60310440351507024199118550179, 4.81837070123632901181594673101, 4.96127408925626484358602737948, 5.44389636417750603702632394959, 5.59585216326895650393756781464, 5.60871968477146653844467978363, 5.70299252086931512555366913503, 6.30067219957520895055800718777, 6.30683605479659631785898456153, 6.52132167812112477064575626731, 6.76973644957434525780156071947, 6.77229265427398682634036357251

Graph of the $Z$-function along the critical line