Properties

Label 8-1110e4-1.1-c1e4-0-2
Degree $8$
Conductor $1.518\times 10^{12}$
Sign $1$
Analytic cond. $6171.63$
Root an. cond. $2.97714$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·9-s − 20·11-s + 3·16-s + 20·19-s − 8·25-s + 8·31-s + 4·36-s − 32·41-s + 40·44-s + 22·49-s + 24·59-s + 8·61-s − 4·64-s − 32·71-s − 40·76-s − 32·79-s + 3·81-s + 28·89-s + 40·99-s + 16·100-s + 24·101-s − 36·109-s + 210·121-s − 16·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 4-s − 2/3·9-s − 6.03·11-s + 3/4·16-s + 4.58·19-s − 8/5·25-s + 1.43·31-s + 2/3·36-s − 4.99·41-s + 6.03·44-s + 22/7·49-s + 3.12·59-s + 1.02·61-s − 1/2·64-s − 3.79·71-s − 4.58·76-s − 3.60·79-s + 1/3·81-s + 2.96·89-s + 4.02·99-s + 8/5·100-s + 2.38·101-s − 3.44·109-s + 19.0·121-s − 1.43·124-s + 0.0887·127-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4}\)
Sign: $1$
Analytic conductor: \(6171.63\)
Root analytic conductor: \(2.97714\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 37^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.2507670081\)
\(L(\frac12)\) \(\approx\) \(0.2507670081\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3$C_2$ \( ( 1 + T^{2} )^{2} \)
5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + T^{2} )^{2} \)
good7$D_4\times C_2$ \( 1 - 22 T^{2} + 211 T^{4} - 22 p^{2} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 + 10 T + 45 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 14 T^{2} + 315 T^{4} - 14 p^{2} T^{6} + p^{4} T^{8} \)
17$D_4\times C_2$ \( 1 - 14 T^{2} + 427 T^{4} - 14 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 - 10 T + 55 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 37 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 4 T + 34 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_{4}$ \( ( 1 + 16 T + 144 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 20 T^{2} + 2646 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 16 T^{2} + 62 p T^{4} + 16 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 194 T^{2} + 14995 T^{4} - 194 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 - 12 T + 104 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 4 T + 54 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 244 T^{2} + 23734 T^{4} - 244 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 16 T + 204 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 226 T^{2} + 22627 T^{4} - 226 p^{2} T^{6} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 16 T + 204 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 118 T^{2} + 13731 T^{4} - 118 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 - 14 T + 129 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 8 T^{2} - 4494 T^{4} + 8 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.20304895068573087182937466285, −6.99255461976536827688969365086, −6.69640481852430767602328493362, −6.32793177543000704781684784022, −5.75028243834403966390769203499, −5.70072068444289118259050456784, −5.56494869353098323184789162774, −5.38773032673114205143703896661, −5.23976147055750973998115521099, −5.23158957079379639123550981183, −4.95383299185688125703484283755, −4.64455808985397001753157061976, −4.49686991598703664509884565010, −3.84722069413717081328236694406, −3.72706007252514306689074627160, −3.33398058283875100785931057948, −3.17461469679749977336425181653, −2.82872287498152258370242058337, −2.69575198636421418207435831836, −2.61178069832126933487519023709, −2.19457354981061130362456614644, −1.70346025938810581967365430448, −1.17396202243104779597542778735, −0.62232481732299538339438259789, −0.17281953492235326151670769701, 0.17281953492235326151670769701, 0.62232481732299538339438259789, 1.17396202243104779597542778735, 1.70346025938810581967365430448, 2.19457354981061130362456614644, 2.61178069832126933487519023709, 2.69575198636421418207435831836, 2.82872287498152258370242058337, 3.17461469679749977336425181653, 3.33398058283875100785931057948, 3.72706007252514306689074627160, 3.84722069413717081328236694406, 4.49686991598703664509884565010, 4.64455808985397001753157061976, 4.95383299185688125703484283755, 5.23158957079379639123550981183, 5.23976147055750973998115521099, 5.38773032673114205143703896661, 5.56494869353098323184789162774, 5.70072068444289118259050456784, 5.75028243834403966390769203499, 6.32793177543000704781684784022, 6.69640481852430767602328493362, 6.99255461976536827688969365086, 7.20304895068573087182937466285

Graph of the $Z$-function along the critical line