| L(s) = 1 | + 1.73·3-s + 1.99·9-s − 11-s − 1.73·23-s + 1.73·27-s + 31-s − 1.73·33-s − 1.73·37-s + 49-s + 59-s − 1.73·67-s − 2.99·69-s − 71-s + 0.999·81-s − 89-s + 1.73·93-s + 1.73·97-s − 1.99·99-s − 2.99·111-s + 1.73·113-s + ⋯ |
| L(s) = 1 | + 1.73·3-s + 1.99·9-s − 11-s − 1.73·23-s + 1.73·27-s + 31-s − 1.73·33-s − 1.73·37-s + 49-s + 59-s − 1.73·67-s − 2.99·69-s − 71-s + 0.999·81-s − 89-s + 1.73·93-s + 1.73·97-s − 1.99·99-s − 2.99·111-s + 1.73·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.709184257\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.709184257\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 + T \) |
| good | 3 | \( 1 - 1.73T + T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + 1.73T + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 + 1.73T + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + 1.73T + T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 - 1.73T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12459472806766885954537818362, −9.042278849217249524231650432152, −8.407203293285622527421481733753, −7.79343182612736339393143561646, −7.06344963719265148844445609685, −5.82434080685729024192167866888, −4.59805343546361649538028565164, −3.67008357008188912795257413478, −2.74958642943566616652444799837, −1.88673636656668013897122898323,
1.88673636656668013897122898323, 2.74958642943566616652444799837, 3.67008357008188912795257413478, 4.59805343546361649538028565164, 5.82434080685729024192167866888, 7.06344963719265148844445609685, 7.79343182612736339393143561646, 8.407203293285622527421481733753, 9.042278849217249524231650432152, 10.12459472806766885954537818362