Properties

Label 2-110-1.1-c3-0-7
Degree $2$
Conductor $110$
Sign $1$
Analytic cond. $6.49021$
Root an. cond. $2.54758$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 8·3-s + 4·4-s + 5·5-s + 16·6-s − 12·7-s + 8·8-s + 37·9-s + 10·10-s − 11·11-s + 32·12-s − 34·13-s − 24·14-s + 40·15-s + 16·16-s − 86·17-s + 74·18-s − 4·19-s + 20·20-s − 96·21-s − 22·22-s + 148·23-s + 64·24-s + 25·25-s − 68·26-s + 80·27-s − 48·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.53·3-s + 1/2·4-s + 0.447·5-s + 1.08·6-s − 0.647·7-s + 0.353·8-s + 1.37·9-s + 0.316·10-s − 0.301·11-s + 0.769·12-s − 0.725·13-s − 0.458·14-s + 0.688·15-s + 1/4·16-s − 1.22·17-s + 0.968·18-s − 0.0482·19-s + 0.223·20-s − 0.997·21-s − 0.213·22-s + 1.34·23-s + 0.544·24-s + 1/5·25-s − 0.512·26-s + 0.570·27-s − 0.323·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110\)    =    \(2 \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(6.49021\)
Root analytic conductor: \(2.54758\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 110,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.594102952\)
\(L(\frac12)\) \(\approx\) \(3.594102952\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
5 \( 1 - p T \)
11 \( 1 + p T \)
good3 \( 1 - 8 T + p^{3} T^{2} \)
7 \( 1 + 12 T + p^{3} T^{2} \)
13 \( 1 + 34 T + p^{3} T^{2} \)
17 \( 1 + 86 T + p^{3} T^{2} \)
19 \( 1 + 4 T + p^{3} T^{2} \)
23 \( 1 - 148 T + p^{3} T^{2} \)
29 \( 1 - 134 T + p^{3} T^{2} \)
31 \( 1 + 280 T + p^{3} T^{2} \)
37 \( 1 - 430 T + p^{3} T^{2} \)
41 \( 1 + 6 T + p^{3} T^{2} \)
43 \( 1 + 136 T + p^{3} T^{2} \)
47 \( 1 + 28 T + p^{3} T^{2} \)
53 \( 1 + 658 T + p^{3} T^{2} \)
59 \( 1 - 4 T + p^{3} T^{2} \)
61 \( 1 + 90 T + p^{3} T^{2} \)
67 \( 1 - 96 T + p^{3} T^{2} \)
71 \( 1 - 816 T + p^{3} T^{2} \)
73 \( 1 + 430 T + p^{3} T^{2} \)
79 \( 1 - 1296 T + p^{3} T^{2} \)
83 \( 1 + 608 T + p^{3} T^{2} \)
89 \( 1 - 810 T + p^{3} T^{2} \)
97 \( 1 - 706 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15106218773735419196510859184, −12.82478064022648878307882670295, −11.08307414186094850880382218359, −9.750867972880572090575287365812, −8.952358325740457934369857929606, −7.62770120649784248680484115488, −6.50431227374710379533789534864, −4.76139229998996872602964402370, −3.25610859441392328566027158661, −2.25984003118220183730307166482, 2.25984003118220183730307166482, 3.25610859441392328566027158661, 4.76139229998996872602964402370, 6.50431227374710379533789534864, 7.62770120649784248680484115488, 8.952358325740457934369857929606, 9.750867972880572090575287365812, 11.08307414186094850880382218359, 12.82478064022648878307882670295, 13.15106218773735419196510859184

Graph of the $Z$-function along the critical line