L(s) = 1 | + (0.453 − 0.891i)2-s + (−0.0342 − 0.216i)3-s + (−0.587 − 0.809i)4-s + (−0.388 − 2.20i)5-s + (−0.208 − 0.0677i)6-s + (0.104 + 0.0165i)7-s + (−0.987 + 0.156i)8-s + (2.80 − 0.912i)9-s + (−2.13 − 0.653i)10-s + (−0.733 + 3.23i)11-s + (−0.154 + 0.154i)12-s + (1.77 + 0.904i)13-s + (0.0623 − 0.0858i)14-s + (−0.463 + 0.159i)15-s + (−0.309 + 0.951i)16-s + (−4.77 + 2.43i)17-s + ⋯ |
L(s) = 1 | + (0.321 − 0.630i)2-s + (−0.0197 − 0.124i)3-s + (−0.293 − 0.404i)4-s + (−0.173 − 0.984i)5-s + (−0.0850 − 0.0276i)6-s + (0.0396 + 0.00627i)7-s + (−0.349 + 0.0553i)8-s + (0.935 − 0.304i)9-s + (−0.676 − 0.206i)10-s + (−0.221 + 0.975i)11-s + (−0.0447 + 0.0447i)12-s + (0.492 + 0.250i)13-s + (0.0166 − 0.0229i)14-s + (−0.119 + 0.0412i)15-s + (−0.0772 + 0.237i)16-s + (−1.15 + 0.590i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.204 + 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.204 + 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.902918 - 0.734059i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.902918 - 0.734059i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.453 + 0.891i)T \) |
| 5 | \( 1 + (0.388 + 2.20i)T \) |
| 11 | \( 1 + (0.733 - 3.23i)T \) |
good | 3 | \( 1 + (0.0342 + 0.216i)T + (-2.85 + 0.927i)T^{2} \) |
| 7 | \( 1 + (-0.104 - 0.0165i)T + (6.65 + 2.16i)T^{2} \) |
| 13 | \( 1 + (-1.77 - 0.904i)T + (7.64 + 10.5i)T^{2} \) |
| 17 | \( 1 + (4.77 - 2.43i)T + (9.99 - 13.7i)T^{2} \) |
| 19 | \( 1 + (-3.72 - 2.70i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (1.26 + 1.26i)T + 23iT^{2} \) |
| 29 | \( 1 + (-3.14 + 2.28i)T + (8.96 - 27.5i)T^{2} \) |
| 31 | \( 1 + (-2.80 - 8.62i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-1.42 + 9.02i)T + (-35.1 - 11.4i)T^{2} \) |
| 41 | \( 1 + (-0.361 + 0.498i)T + (-12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + (2.10 - 2.10i)T - 43iT^{2} \) |
| 47 | \( 1 + (8.76 - 1.38i)T + (44.6 - 14.5i)T^{2} \) |
| 53 | \( 1 + (-3.65 + 7.17i)T + (-31.1 - 42.8i)T^{2} \) |
| 59 | \( 1 + (6.35 + 8.75i)T + (-18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (0.692 + 0.225i)T + (49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + (-1.43 + 1.43i)T - 67iT^{2} \) |
| 71 | \( 1 + (-0.219 + 0.674i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (2.08 - 13.1i)T + (-69.4 - 22.5i)T^{2} \) |
| 79 | \( 1 + (-2.31 - 7.12i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (2.58 + 5.07i)T + (-48.7 + 67.1i)T^{2} \) |
| 89 | \( 1 - 0.464iT - 89T^{2} \) |
| 97 | \( 1 + (1.58 + 0.809i)T + (57.0 + 78.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.04443755933509969749634313001, −12.57432365453128199201468309066, −11.60118604752816502530093427377, −10.25387552369919496834416805450, −9.340771309958661783741297316994, −8.125080730468029132393091400651, −6.61322688558989367182453944076, −4.96183970463473833742727916623, −3.97859914882634628801693708093, −1.65951359393501332079198609665,
3.07808894231425187121286157192, 4.57855079704077545607995015222, 6.12637061277398760066640372912, 7.14456188016796856438080796575, 8.194976676782776952731250880842, 9.640743704663110522740229640488, 10.84874643068370234985474703157, 11.70826500154213585324288611814, 13.42896277457308171735783855957, 13.66195782146405057450205630701