Properties

Label 4-33e4-1.1-c2e2-0-1
Degree $4$
Conductor $1185921$
Sign $1$
Analytic cond. $880.492$
Root an. cond. $5.44730$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·4-s + 2·7-s + 32·13-s + 20·16-s + 66·19-s + 18·25-s + 12·28-s + 62·31-s − 114·37-s − 95·49-s + 192·52-s + 210·61-s + 24·64-s − 206·67-s − 94·73-s + 396·76-s + 46·79-s + 64·91-s − 50·97-s + 108·100-s − 50·103-s − 238·109-s + 40·112-s + 372·124-s + 127-s + 131-s + 132·133-s + ⋯
L(s)  = 1  + 3/2·4-s + 2/7·7-s + 2.46·13-s + 5/4·16-s + 3.47·19-s + 0.719·25-s + 3/7·28-s + 2·31-s − 3.08·37-s − 1.93·49-s + 3.69·52-s + 3.44·61-s + 3/8·64-s − 3.07·67-s − 1.28·73-s + 5.21·76-s + 0.582·79-s + 0.703·91-s − 0.515·97-s + 1.07·100-s − 0.485·103-s − 2.18·109-s + 5/14·112-s + 3·124-s + 0.00787·127-s + 0.00763·131-s + 0.992·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1185921 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1185921 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1185921\)    =    \(3^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(880.492\)
Root analytic conductor: \(5.44730\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1185921,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(6.863020923\)
\(L(\frac12)\) \(\approx\) \(6.863020923\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
11 \( 1 \)
good2$C_2^2$ \( 1 - 3 p T^{2} + p^{4} T^{4} \)
5$C_2^2$ \( 1 - 18 T^{2} + p^{4} T^{4} \)
7$C_2$ \( ( 1 - T + p^{2} T^{2} )^{2} \)
13$C_2$ \( ( 1 - 16 T + p^{2} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 450 T^{2} + p^{4} T^{4} \)
19$C_2$ \( ( 1 - 33 T + p^{2} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 480 T^{2} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 1520 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - p T + p^{2} T^{2} )^{2} \)
37$C_2$ \( ( 1 + 57 T + p^{2} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 3120 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 720 T^{2} + p^{4} T^{4} \)
53$C_2^2$ \( 1 + 2320 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 2160 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 105 T + p^{2} T^{2} )^{2} \)
67$C_2$ \( ( 1 + 103 T + p^{2} T^{2} )^{2} \)
71$C_2^2$ \( 1 + 4030 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 + 47 T + p^{2} T^{2} )^{2} \)
79$C_2$ \( ( 1 - 23 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 2528 T^{2} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 13250 T^{2} + p^{4} T^{4} \)
97$C_2$ \( ( 1 + 25 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07420051806461618699947572837, −9.495727103434120399017220993915, −8.989557462170483258618647923452, −8.603718318026404854878091153008, −8.072269743828641353320962854262, −7.957585860392948710862648915010, −7.22142900092143141849208689779, −6.81893965854202978867851421303, −6.79778640389330186747262637349, −5.96069484627692619948180969144, −5.84360145878746044250049397617, −5.15019612548564688930750614090, −4.94733336923083611330269066800, −3.92848988069182232409298318738, −3.52272827202998706707420919678, −2.98984124442600382980158990031, −2.84788741011434866467437108435, −1.60111092638966518630347977692, −1.45650354476959540702847990280, −0.876831941417362337641165149912, 0.876831941417362337641165149912, 1.45650354476959540702847990280, 1.60111092638966518630347977692, 2.84788741011434866467437108435, 2.98984124442600382980158990031, 3.52272827202998706707420919678, 3.92848988069182232409298318738, 4.94733336923083611330269066800, 5.15019612548564688930750614090, 5.84360145878746044250049397617, 5.96069484627692619948180969144, 6.79778640389330186747262637349, 6.81893965854202978867851421303, 7.22142900092143141849208689779, 7.957585860392948710862648915010, 8.072269743828641353320962854262, 8.603718318026404854878091153008, 8.989557462170483258618647923452, 9.495727103434120399017220993915, 10.07420051806461618699947572837

Graph of the $Z$-function along the critical line