Properties

Label 2-1080-1.1-c5-0-46
Degree $2$
Conductor $1080$
Sign $-1$
Analytic cond. $173.214$
Root an. cond. $13.1610$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 25·5-s − 77.0·7-s − 403.·11-s + 858.·13-s − 1.39e3·17-s + 1.28e3·19-s − 794.·23-s + 625·25-s + 3.19e3·29-s + 6.56e3·31-s + 1.92e3·35-s + 2.92e3·37-s − 8.09e3·41-s − 4.96e3·43-s + 1.68e3·47-s − 1.08e4·49-s + 3.36e4·53-s + 1.00e4·55-s + 2.47e4·59-s − 4.06e4·61-s − 2.14e4·65-s + 4.84e4·67-s + 3.15e3·71-s + 1.22e4·73-s + 3.10e4·77-s + 4.82e4·79-s − 1.38e4·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.594·7-s − 1.00·11-s + 1.40·13-s − 1.17·17-s + 0.818·19-s − 0.313·23-s + 0.200·25-s + 0.704·29-s + 1.22·31-s + 0.265·35-s + 0.351·37-s − 0.751·41-s − 0.409·43-s + 0.111·47-s − 0.646·49-s + 1.64·53-s + 0.449·55-s + 0.925·59-s − 1.39·61-s − 0.630·65-s + 1.31·67-s + 0.0742·71-s + 0.269·73-s + 0.596·77-s + 0.868·79-s − 0.220·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1080\)    =    \(2^{3} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(173.214\)
Root analytic conductor: \(13.1610\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1080,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 25T \)
good7 \( 1 + 77.0T + 1.68e4T^{2} \)
11 \( 1 + 403.T + 1.61e5T^{2} \)
13 \( 1 - 858.T + 3.71e5T^{2} \)
17 \( 1 + 1.39e3T + 1.41e6T^{2} \)
19 \( 1 - 1.28e3T + 2.47e6T^{2} \)
23 \( 1 + 794.T + 6.43e6T^{2} \)
29 \( 1 - 3.19e3T + 2.05e7T^{2} \)
31 \( 1 - 6.56e3T + 2.86e7T^{2} \)
37 \( 1 - 2.92e3T + 6.93e7T^{2} \)
41 \( 1 + 8.09e3T + 1.15e8T^{2} \)
43 \( 1 + 4.96e3T + 1.47e8T^{2} \)
47 \( 1 - 1.68e3T + 2.29e8T^{2} \)
53 \( 1 - 3.36e4T + 4.18e8T^{2} \)
59 \( 1 - 2.47e4T + 7.14e8T^{2} \)
61 \( 1 + 4.06e4T + 8.44e8T^{2} \)
67 \( 1 - 4.84e4T + 1.35e9T^{2} \)
71 \( 1 - 3.15e3T + 1.80e9T^{2} \)
73 \( 1 - 1.22e4T + 2.07e9T^{2} \)
79 \( 1 - 4.82e4T + 3.07e9T^{2} \)
83 \( 1 + 1.38e4T + 3.93e9T^{2} \)
89 \( 1 + 7.38e4T + 5.58e9T^{2} \)
97 \( 1 + 1.35e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.547261253624348532049595598371, −8.110428242544188080635449995156, −6.97059601334769093619726784392, −6.30188815971785205092080065741, −5.31237190615968215402257126357, −4.29821074484396991949575639402, −3.37095863083271136348863820647, −2.47793953749110019961414076510, −1.06192662101778802795079569996, 0, 1.06192662101778802795079569996, 2.47793953749110019961414076510, 3.37095863083271136348863820647, 4.29821074484396991949575639402, 5.31237190615968215402257126357, 6.30188815971785205092080065741, 6.97059601334769093619726784392, 8.110428242544188080635449995156, 8.547261253624348532049595598371

Graph of the $Z$-function along the critical line