L(s) = 1 | + (−1.17 − 0.788i)2-s + (0.757 + 1.85i)4-s + i·5-s + 2.12·7-s + (0.569 − 2.77i)8-s + (0.788 − 1.17i)10-s − 5.48i·11-s − 4.91i·13-s + (−2.49 − 1.67i)14-s + (−2.85 + 2.80i)16-s + 0.235·17-s + 5.23i·19-s + (−1.85 + 0.757i)20-s + (−4.31 + 6.43i)22-s − 7.42·23-s + ⋯ |
L(s) = 1 | + (−0.830 − 0.557i)2-s + (0.378 + 0.925i)4-s + 0.447i·5-s + 0.804·7-s + (0.201 − 0.979i)8-s + (0.249 − 0.371i)10-s − 1.65i·11-s − 1.36i·13-s + (−0.667 − 0.448i)14-s + (−0.712 + 0.701i)16-s + 0.0571·17-s + 1.20i·19-s + (−0.413 + 0.169i)20-s + (−0.920 + 1.37i)22-s − 1.54·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.201 + 0.979i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.201 + 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9757616791\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9757616791\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.17 + 0.788i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - iT \) |
good | 7 | \( 1 - 2.12T + 7T^{2} \) |
| 11 | \( 1 + 5.48iT - 11T^{2} \) |
| 13 | \( 1 + 4.91iT - 13T^{2} \) |
| 17 | \( 1 - 0.235T + 17T^{2} \) |
| 19 | \( 1 - 5.23iT - 19T^{2} \) |
| 23 | \( 1 + 7.42T + 23T^{2} \) |
| 29 | \( 1 + 4.24iT - 29T^{2} \) |
| 31 | \( 1 - 5.05T + 31T^{2} \) |
| 37 | \( 1 + 2.27iT - 37T^{2} \) |
| 41 | \( 1 + 3.26T + 41T^{2} \) |
| 43 | \( 1 + 9.90iT - 43T^{2} \) |
| 47 | \( 1 - 8.17T + 47T^{2} \) |
| 53 | \( 1 + 10.6iT - 53T^{2} \) |
| 59 | \( 1 - 0.702iT - 59T^{2} \) |
| 61 | \( 1 - 0.319iT - 61T^{2} \) |
| 67 | \( 1 + 2.70iT - 67T^{2} \) |
| 71 | \( 1 + 7.18T + 71T^{2} \) |
| 73 | \( 1 - 9.66T + 73T^{2} \) |
| 79 | \( 1 + 10.8T + 79T^{2} \) |
| 83 | \( 1 - 8.53iT - 83T^{2} \) |
| 89 | \( 1 - 9.90T + 89T^{2} \) |
| 97 | \( 1 - 14.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.939414565500704189975931398960, −8.569653785930226695953636198353, −8.183403372868340367299241662648, −7.58091306929786885130379602114, −6.25280532028417123931833129213, −5.55093842293756371535513396246, −3.95424589853710499960096585974, −3.19840010926763325079635065586, −2.03889731188371147864148933417, −0.59357354700352900801364461825,
1.44728973368172890973086778124, 2.28210139787628271056554328113, 4.51754740193626043129162151303, 4.75007586188034935457502052392, 6.08974249104795237505316895652, 6.97814782876473809083763476911, 7.61992610224552774602069598464, 8.491375707220335073478422895640, 9.261672881157976772459673308915, 9.843757589149614037143267325972