Properties

Label 2-108-108.43-c2-0-18
Degree $2$
Conductor $108$
Sign $0.999 + 0.0126i$
Analytic cond. $2.94278$
Root an. cond. $1.71545$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.72 − 1.00i)2-s + (−0.482 + 2.96i)3-s + (1.97 − 3.47i)4-s + (−0.0274 − 0.0100i)5-s + (2.14 + 5.60i)6-s + (11.2 + 1.98i)7-s + (−0.0814 − 7.99i)8-s + (−8.53 − 2.85i)9-s + (−0.0575 + 0.0103i)10-s + (4.17 + 11.4i)11-s + (9.34 + 7.53i)12-s + (0.356 − 0.299i)13-s + (21.4 − 7.87i)14-s + (0.0428 − 0.0765i)15-s + (−8.18 − 13.7i)16-s + (−6.07 − 10.5i)17-s + ⋯
L(s)  = 1  + (0.864 − 0.502i)2-s + (−0.160 + 0.986i)3-s + (0.494 − 0.869i)4-s + (−0.00549 − 0.00200i)5-s + (0.357 + 0.933i)6-s + (1.60 + 0.282i)7-s + (−0.0101 − 0.999i)8-s + (−0.948 − 0.317i)9-s + (−0.00575 + 0.00103i)10-s + (0.379 + 1.04i)11-s + (0.778 + 0.627i)12-s + (0.0274 − 0.0230i)13-s + (1.52 − 0.562i)14-s + (0.00285 − 0.00510i)15-s + (−0.511 − 0.859i)16-s + (−0.357 − 0.619i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0126i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.0126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108\)    =    \(2^{2} \cdot 3^{3}\)
Sign: $0.999 + 0.0126i$
Analytic conductor: \(2.94278\)
Root analytic conductor: \(1.71545\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{108} (43, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 108,\ (\ :1),\ 0.999 + 0.0126i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.19376 - 0.0138358i\)
\(L(\frac12)\) \(\approx\) \(2.19376 - 0.0138358i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.72 + 1.00i)T \)
3 \( 1 + (0.482 - 2.96i)T \)
good5 \( 1 + (0.0274 + 0.0100i)T + (19.1 + 16.0i)T^{2} \)
7 \( 1 + (-11.2 - 1.98i)T + (46.0 + 16.7i)T^{2} \)
11 \( 1 + (-4.17 - 11.4i)T + (-92.6 + 77.7i)T^{2} \)
13 \( 1 + (-0.356 + 0.299i)T + (29.3 - 166. i)T^{2} \)
17 \( 1 + (6.07 + 10.5i)T + (-144.5 + 250. i)T^{2} \)
19 \( 1 + (14.4 + 8.34i)T + (180.5 + 312. i)T^{2} \)
23 \( 1 + (43.8 - 7.72i)T + (497. - 180. i)T^{2} \)
29 \( 1 + (-0.0229 - 0.0192i)T + (146. + 828. i)T^{2} \)
31 \( 1 + (-41.6 + 7.35i)T + (903. - 328. i)T^{2} \)
37 \( 1 + (-11.7 - 20.3i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (3.36 - 2.82i)T + (291. - 1.65e3i)T^{2} \)
43 \( 1 + (-12.3 - 34.0i)T + (-1.41e3 + 1.18e3i)T^{2} \)
47 \( 1 + (45.6 + 8.05i)T + (2.07e3 + 755. i)T^{2} \)
53 \( 1 - 10.6T + 2.80e3T^{2} \)
59 \( 1 + (16.2 - 44.7i)T + (-2.66e3 - 2.23e3i)T^{2} \)
61 \( 1 + (-2.22 + 12.6i)T + (-3.49e3 - 1.27e3i)T^{2} \)
67 \( 1 + (-44.1 - 52.5i)T + (-779. + 4.42e3i)T^{2} \)
71 \( 1 + (15.6 - 9.04i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (-66.0 + 114. i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (-40.9 + 48.8i)T + (-1.08e3 - 6.14e3i)T^{2} \)
83 \( 1 + (-51.0 + 60.8i)T + (-1.19e3 - 6.78e3i)T^{2} \)
89 \( 1 + (-36.4 + 63.0i)T + (-3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (113. - 41.3i)T + (7.20e3 - 6.04e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.68456149365130660191244523584, −11.96580644180402944821089552700, −11.62175788127807067949875811191, −10.47467236248344149267413972753, −9.542277474865173044700916829132, −8.060363657611121141258233836085, −6.21680151688888525631026967166, −4.84336407201790509775994662737, −4.25110658569511915956358833039, −2.18861367643681359307786409683, 1.95037247016095728436842522958, 4.07002012195754344249934714172, 5.57160814028808476932117165844, 6.53611584807644250921443204652, 8.036274884209441177253545087605, 8.296478505178230411266467088122, 10.89402138137490825730361211968, 11.60598666699987168743597697463, 12.48813273776220281283926427967, 13.83038554348116390423815171460

Graph of the $Z$-function along the critical line