Properties

Label 2-108-108.31-c2-0-31
Degree $2$
Conductor $108$
Sign $-0.989 + 0.142i$
Analytic cond. $2.94278$
Root an. cond. $1.71545$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.747 − 1.85i)2-s + (−2.41 + 1.77i)3-s + (−2.88 − 2.77i)4-s + (0.463 − 2.62i)5-s + (1.48 + 5.81i)6-s + (−4.34 − 5.18i)7-s + (−7.29 + 3.27i)8-s + (2.70 − 8.58i)9-s + (−4.52 − 2.82i)10-s + (−18.5 + 3.26i)11-s + (11.8 + 1.59i)12-s + (−4.76 + 1.73i)13-s + (−12.8 + 4.19i)14-s + (3.53 + 7.17i)15-s + (0.616 + 15.9i)16-s + (7.37 − 12.7i)17-s + ⋯
L(s)  = 1  + (0.373 − 0.927i)2-s + (−0.806 + 0.591i)3-s + (−0.720 − 0.693i)4-s + (0.0926 − 0.525i)5-s + (0.246 + 0.969i)6-s + (−0.621 − 0.740i)7-s + (−0.912 + 0.409i)8-s + (0.300 − 0.953i)9-s + (−0.452 − 0.282i)10-s + (−1.68 + 0.297i)11-s + (0.991 + 0.133i)12-s + (−0.366 + 0.133i)13-s + (−0.918 + 0.299i)14-s + (0.235 + 0.478i)15-s + (0.0385 + 0.999i)16-s + (0.433 − 0.751i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 + 0.142i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.989 + 0.142i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108\)    =    \(2^{2} \cdot 3^{3}\)
Sign: $-0.989 + 0.142i$
Analytic conductor: \(2.94278\)
Root analytic conductor: \(1.71545\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{108} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 108,\ (\ :1),\ -0.989 + 0.142i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0484333 - 0.677655i\)
\(L(\frac12)\) \(\approx\) \(0.0484333 - 0.677655i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.747 + 1.85i)T \)
3 \( 1 + (2.41 - 1.77i)T \)
good5 \( 1 + (-0.463 + 2.62i)T + (-23.4 - 8.55i)T^{2} \)
7 \( 1 + (4.34 + 5.18i)T + (-8.50 + 48.2i)T^{2} \)
11 \( 1 + (18.5 - 3.26i)T + (113. - 41.3i)T^{2} \)
13 \( 1 + (4.76 - 1.73i)T + (129. - 108. i)T^{2} \)
17 \( 1 + (-7.37 + 12.7i)T + (-144.5 - 250. i)T^{2} \)
19 \( 1 + (-28.7 + 16.6i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (-11.3 + 13.5i)T + (-91.8 - 520. i)T^{2} \)
29 \( 1 + (38.2 + 13.9i)T + (644. + 540. i)T^{2} \)
31 \( 1 + (4.43 - 5.28i)T + (-166. - 946. i)T^{2} \)
37 \( 1 + (4.65 - 8.05i)T + (-684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (20.9 - 7.61i)T + (1.28e3 - 1.08e3i)T^{2} \)
43 \( 1 + (-42.0 + 7.40i)T + (1.73e3 - 632. i)T^{2} \)
47 \( 1 + (35.0 + 41.7i)T + (-383. + 2.17e3i)T^{2} \)
53 \( 1 - 25.6T + 2.80e3T^{2} \)
59 \( 1 + (15.3 + 2.70i)T + (3.27e3 + 1.19e3i)T^{2} \)
61 \( 1 + (48.6 - 40.8i)T + (646. - 3.66e3i)T^{2} \)
67 \( 1 + (11.8 + 32.5i)T + (-3.43e3 + 2.88e3i)T^{2} \)
71 \( 1 + (23.7 + 13.6i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (-18.2 - 31.6i)T + (-2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (-43.9 + 120. i)T + (-4.78e3 - 4.01e3i)T^{2} \)
83 \( 1 + (-0.482 + 1.32i)T + (-5.27e3 - 4.42e3i)T^{2} \)
89 \( 1 + (34.1 + 59.2i)T + (-3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (19.7 + 111. i)T + (-8.84e3 + 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.90915673545695744227180329192, −11.88669822721422552900298062429, −10.82684294883361077610623996276, −10.01030040655875100947926052935, −9.229874917745587117755276147525, −7.23442410616388588956610719097, −5.42858051918381255522006931274, −4.75991412640755438248964248501, −3.13618675353254584327507760550, −0.48028101826824517897019771804, 3.03752147092226455564404891922, 5.32860533858780992935228681341, 5.85153198873635910197006456525, 7.22120248932709953305405067439, 8.010086716447315646952881820390, 9.663733591204114379315533086346, 10.90496635579853280563084616773, 12.32107076109469712501211359183, 12.87726903266742924736806228736, 13.87426433702542911945698976488

Graph of the $Z$-function along the critical line