L(s) = 1 | + 1.30·3-s − 3i·5-s − 4.30·7-s − 1.30·9-s − 3·11-s + 6.90i·13-s − 3.90i·15-s + 4.60·17-s − 5.30i·19-s − 5.60·21-s + 7.60i·23-s − 4·25-s − 5.60·27-s − 7.60·29-s − 5.60·31-s + ⋯ |
L(s) = 1 | + 0.752·3-s − 1.34i·5-s − 1.62·7-s − 0.434·9-s − 0.904·11-s + 1.91i·13-s − 1.00i·15-s + 1.11·17-s − 1.21i·19-s − 1.22·21-s + 1.58i·23-s − 0.800·25-s − 1.07·27-s − 1.41·29-s − 1.00·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1072 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.892 - 0.451i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1072 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.892 - 0.451i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 67 | \( 1 + (7.30 + 3.69i)T \) |
good | 3 | \( 1 - 1.30T + 3T^{2} \) |
| 5 | \( 1 + 3iT - 5T^{2} \) |
| 7 | \( 1 + 4.30T + 7T^{2} \) |
| 11 | \( 1 + 3T + 11T^{2} \) |
| 13 | \( 1 - 6.90iT - 13T^{2} \) |
| 17 | \( 1 - 4.60T + 17T^{2} \) |
| 19 | \( 1 + 5.30iT - 19T^{2} \) |
| 23 | \( 1 - 7.60iT - 23T^{2} \) |
| 29 | \( 1 + 7.60T + 29T^{2} \) |
| 31 | \( 1 + 5.60T + 31T^{2} \) |
| 37 | \( 1 - 1.69T + 37T^{2} \) |
| 41 | \( 1 + 3.90iT - 41T^{2} \) |
| 43 | \( 1 + 4.69T + 43T^{2} \) |
| 47 | \( 1 - 3.69iT - 47T^{2} \) |
| 53 | \( 1 - 3iT - 53T^{2} \) |
| 59 | \( 1 + 9.21iT - 59T^{2} \) |
| 61 | \( 1 + 6.90iT - 61T^{2} \) |
| 71 | \( 1 + 1.60iT - 71T^{2} \) |
| 73 | \( 1 + 8.60T + 73T^{2} \) |
| 79 | \( 1 + 4.69T + 79T^{2} \) |
| 83 | \( 1 - 6.69iT - 83T^{2} \) |
| 89 | \( 1 - 4.39T + 89T^{2} \) |
| 97 | \( 1 + 4.81iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.303359792336877815329909050513, −8.941385137986559332984755013722, −7.81256344879696215039092656773, −7.05067955197044020744411027665, −5.87755188090651168987046566075, −5.12618434630317131118295190853, −3.89515604040611391609214914499, −3.10511369233147523544263599322, −1.83211212787709741401321177673, 0,
2.55737154256160772752495757173, 3.13497463474871162191898552945, 3.58669082613473774830850403064, 5.65341570126185990897593158003, 5.98901646140210541127984624392, 7.21933507847259645993663016496, 7.78873211455027837174816176862, 8.625216611769191668332353630770, 9.815710572284591103375859430554