L(s) = 1 | + (1.19 − 2.07i)2-s + (−1.87 − 3.23i)4-s + (2.18 − 3.77i)5-s + (−2.64 + 0.0756i)7-s − 4.17·8-s + (−5.22 − 9.05i)10-s + (−1.09 − 1.89i)11-s + 4.97·13-s + (−3.01 + 5.57i)14-s + (−1.25 + 2.17i)16-s + (0.5 + 0.866i)17-s + (−1.28 + 2.23i)19-s − 16.3·20-s − 5.25·22-s + (−2.98 + 5.16i)23-s + ⋯ |
L(s) = 1 | + (0.847 − 1.46i)2-s + (−0.935 − 1.61i)4-s + (0.975 − 1.69i)5-s + (−0.999 + 0.0285i)7-s − 1.47·8-s + (−1.65 − 2.86i)10-s + (−0.330 − 0.572i)11-s + 1.38·13-s + (−0.804 + 1.49i)14-s + (−0.314 + 0.544i)16-s + (0.121 + 0.210i)17-s + (−0.295 + 0.512i)19-s − 3.65·20-s − 1.12·22-s + (−0.622 + 1.07i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.908 - 0.418i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.908 - 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.528440685\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.528440685\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (2.64 - 0.0756i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-1.19 + 2.07i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-2.18 + 3.77i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.09 + 1.89i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 4.97T + 13T^{2} \) |
| 19 | \( 1 + (1.28 - 2.23i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.98 - 5.16i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 8.59T + 29T^{2} \) |
| 31 | \( 1 + (-1.62 - 2.81i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.41 - 5.92i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 2.32T + 41T^{2} \) |
| 43 | \( 1 - 3.15T + 43T^{2} \) |
| 47 | \( 1 + (-0.0918 + 0.159i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.42 + 2.47i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.78 + 6.54i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.96 - 5.13i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.801 + 1.38i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 10.8T + 71T^{2} \) |
| 73 | \( 1 + (4.18 + 7.25i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.55 - 6.15i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 0.625T + 83T^{2} \) |
| 89 | \( 1 + (-0.479 + 0.830i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 6.43T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.760189696106773211974329506338, −8.857871348029165180821958133821, −8.243695669960643487186757282494, −6.22939237461145638914261935125, −5.78338071524941949554101862203, −4.89831134025034272879850195672, −3.96063020197611097421081639756, −3.06848110023916950356929863683, −1.75843359018744641588835165986, −0.896860343532345154346116796773,
2.47036541806461291899129628623, 3.35781945356177379904653535774, 4.35773618350740029837154000750, 5.72063397988734903285576554071, 6.23003738333837799564151065607, 6.72786408663522145252219776577, 7.37602443680941361775856244616, 8.461707444319237581995204496350, 9.480625594234478286226362830338, 10.37664675390624285045032516724