L(s) = 1 | + (1.19 + 2.07i)2-s + (−1.87 + 3.23i)4-s + (2.18 + 3.77i)5-s + (−2.64 − 0.0756i)7-s − 4.17·8-s + (−5.22 + 9.05i)10-s + (−1.09 + 1.89i)11-s + 4.97·13-s + (−3.01 − 5.57i)14-s + (−1.25 − 2.17i)16-s + (0.5 − 0.866i)17-s + (−1.28 − 2.23i)19-s − 16.3·20-s − 5.25·22-s + (−2.98 − 5.16i)23-s + ⋯ |
L(s) = 1 | + (0.847 + 1.46i)2-s + (−0.935 + 1.61i)4-s + (0.975 + 1.69i)5-s + (−0.999 − 0.0285i)7-s − 1.47·8-s + (−1.65 + 2.86i)10-s + (−0.330 + 0.572i)11-s + 1.38·13-s + (−0.804 − 1.49i)14-s + (−0.314 − 0.544i)16-s + (0.121 − 0.210i)17-s + (−0.295 − 0.512i)19-s − 3.65·20-s − 1.12·22-s + (−0.622 − 1.07i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.908 + 0.418i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.908 + 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.528440685\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.528440685\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (2.64 + 0.0756i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-1.19 - 2.07i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-2.18 - 3.77i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.09 - 1.89i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 4.97T + 13T^{2} \) |
| 19 | \( 1 + (1.28 + 2.23i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.98 + 5.16i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 8.59T + 29T^{2} \) |
| 31 | \( 1 + (-1.62 + 2.81i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.41 + 5.92i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.32T + 41T^{2} \) |
| 43 | \( 1 - 3.15T + 43T^{2} \) |
| 47 | \( 1 + (-0.0918 - 0.159i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.42 - 2.47i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.78 - 6.54i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.96 + 5.13i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.801 - 1.38i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 10.8T + 71T^{2} \) |
| 73 | \( 1 + (4.18 - 7.25i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.55 + 6.15i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 0.625T + 83T^{2} \) |
| 89 | \( 1 + (-0.479 - 0.830i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 6.43T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37664675390624285045032516724, −9.480625594234478286226362830338, −8.461707444319237581995204496350, −7.37602443680941361775856244616, −6.72786408663522145252219776577, −6.23003738333837799564151065607, −5.72063397988734903285576554071, −4.35773618350740029837154000750, −3.35781945356177379904653535774, −2.47036541806461291899129628623,
0.896860343532345154346116796773, 1.75843359018744641588835165986, 3.06848110023916950356929863683, 3.96063020197611097421081639756, 4.89831134025034272879850195672, 5.78338071524941949554101862203, 6.22939237461145638914261935125, 8.243695669960643487186757282494, 8.857871348029165180821958133821, 9.760189696106773211974329506338