L(s) = 1 | + 1.17·2-s − 0.630·4-s + 0.460i·5-s − i·7-s − 3.07·8-s + 0.539i·10-s − 0.709i·11-s + 3.87·13-s − 1.17i·14-s − 2.34·16-s + (2.53 − 3.24i)17-s + 4.17·19-s − 0.290i·20-s − 0.829i·22-s − 7.34i·23-s + ⋯ |
L(s) = 1 | + 0.827·2-s − 0.315·4-s + 0.206i·5-s − 0.377i·7-s − 1.08·8-s + 0.170i·10-s − 0.213i·11-s + 1.07·13-s − 0.312i·14-s − 0.585·16-s + (0.615 − 0.787i)17-s + 0.956·19-s − 0.0650i·20-s − 0.176i·22-s − 1.53i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.787 + 0.615i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.787 + 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.093398382\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.093398382\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + iT \) |
| 17 | \( 1 + (-2.53 + 3.24i)T \) |
good | 2 | \( 1 - 1.17T + 2T^{2} \) |
| 5 | \( 1 - 0.460iT - 5T^{2} \) |
| 11 | \( 1 + 0.709iT - 11T^{2} \) |
| 13 | \( 1 - 3.87T + 13T^{2} \) |
| 19 | \( 1 - 4.17T + 19T^{2} \) |
| 23 | \( 1 + 7.34iT - 23T^{2} \) |
| 29 | \( 1 + 1.70iT - 29T^{2} \) |
| 31 | \( 1 - 4.87iT - 31T^{2} \) |
| 37 | \( 1 + 1.90iT - 37T^{2} \) |
| 41 | \( 1 + 4.17iT - 41T^{2} \) |
| 43 | \( 1 - 8.75T + 43T^{2} \) |
| 47 | \( 1 + 6.72T + 47T^{2} \) |
| 53 | \( 1 + 4.58T + 53T^{2} \) |
| 59 | \( 1 - 3.21T + 59T^{2} \) |
| 61 | \( 1 + 8.48iT - 61T^{2} \) |
| 67 | \( 1 + 6.81T + 67T^{2} \) |
| 71 | \( 1 - 10.7iT - 71T^{2} \) |
| 73 | \( 1 + 5.23iT - 73T^{2} \) |
| 79 | \( 1 - 14.1iT - 79T^{2} \) |
| 83 | \( 1 - 0.496T + 83T^{2} \) |
| 89 | \( 1 + 3.60T + 89T^{2} \) |
| 97 | \( 1 + 11.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.801605576018480040777898336577, −8.945814594287431762387389455932, −8.235085738606234473649770263428, −7.10517369893132013629694534737, −6.26798497517249938018296995432, −5.38581371108785572218686639199, −4.56399506519291818741416860725, −3.58614034699358291296482786655, −2.82458307650704308460410803245, −0.861050433460864711272302440610,
1.32797406504541763915716296272, 3.04195157276556977846671886636, 3.76732449024101592478269504015, 4.79664128491533734052276120189, 5.65117581188357497228853787096, 6.20375429170005546671139511471, 7.49981935167957437677644736682, 8.391006826100765450017926351169, 9.179252617283917175686019758977, 9.814564866335328236072856262610