Properties

Label 2-1071-1.1-c1-0-21
Degree $2$
Conductor $1071$
Sign $1$
Analytic cond. $8.55197$
Root an. cond. $2.92437$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.06·2-s + 2.27·4-s + 0.238·5-s + 7-s + 0.558·8-s + 0.491·10-s + 5.40·11-s + 0.238·13-s + 2.06·14-s − 3.38·16-s + 17-s + 7.89·19-s + 0.540·20-s + 11.1·22-s − 6.38·23-s − 4.94·25-s + 0.491·26-s + 2.27·28-s − 4.13·29-s + 6.18·31-s − 8.11·32-s + 2.06·34-s + 0.238·35-s + 5.64·37-s + 16.3·38-s + 0.132·40-s + 6.30·41-s + ⋯
L(s)  = 1  + 1.46·2-s + 1.13·4-s + 0.106·5-s + 0.377·7-s + 0.197·8-s + 0.155·10-s + 1.62·11-s + 0.0660·13-s + 0.552·14-s − 0.846·16-s + 0.242·17-s + 1.81·19-s + 0.120·20-s + 2.38·22-s − 1.33·23-s − 0.988·25-s + 0.0964·26-s + 0.429·28-s − 0.767·29-s + 1.11·31-s − 1.43·32-s + 0.354·34-s + 0.0402·35-s + 0.927·37-s + 2.64·38-s + 0.0210·40-s + 0.984·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1071\)    =    \(3^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(8.55197\)
Root analytic conductor: \(2.92437\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1071,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.895887888\)
\(L(\frac12)\) \(\approx\) \(3.895887888\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good2 \( 1 - 2.06T + 2T^{2} \)
5 \( 1 - 0.238T + 5T^{2} \)
11 \( 1 - 5.40T + 11T^{2} \)
13 \( 1 - 0.238T + 13T^{2} \)
19 \( 1 - 7.89T + 19T^{2} \)
23 \( 1 + 6.38T + 23T^{2} \)
29 \( 1 + 4.13T + 29T^{2} \)
31 \( 1 - 6.18T + 31T^{2} \)
37 \( 1 - 5.64T + 37T^{2} \)
41 \( 1 - 6.30T + 41T^{2} \)
43 \( 1 - 10.8T + 43T^{2} \)
47 \( 1 + 6.18T + 47T^{2} \)
53 \( 1 + 12.1T + 53T^{2} \)
59 \( 1 - 4.14T + 59T^{2} \)
61 \( 1 + 2.55T + 61T^{2} \)
67 \( 1 - 5.45T + 67T^{2} \)
71 \( 1 + 9.72T + 71T^{2} \)
73 \( 1 + 14.9T + 73T^{2} \)
79 \( 1 + 16.8T + 79T^{2} \)
83 \( 1 + 5.45T + 83T^{2} \)
89 \( 1 - 6.47T + 89T^{2} \)
97 \( 1 + 2.06T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.739577470556639729471412910055, −9.299429622962074610599884804409, −8.028469031447071920982617747618, −7.16072200889284526471138682033, −6.07925529952524005612740811646, −5.69809697209128229580741345844, −4.45274646811917775028645126182, −3.91856146993491953860915128143, −2.87391141196568676495496466894, −1.47870298937905441913389595495, 1.47870298937905441913389595495, 2.87391141196568676495496466894, 3.91856146993491953860915128143, 4.45274646811917775028645126182, 5.69809697209128229580741345844, 6.07925529952524005612740811646, 7.16072200889284526471138682033, 8.028469031447071920982617747618, 9.299429622962074610599884804409, 9.739577470556639729471412910055

Graph of the $Z$-function along the critical line